DOI QR코드

DOI QR Code

Kinetics and Mechanism of Azidolysis of Y-Substituted Phenyl Benzoates

  • Um, Ik-Hwan (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Kim, Eun-Hee (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Han, Hyun-Joo (Division of Nano Sciences and Department of Chemistry, Ewha Womans University)
  • Published : 2008.03.20

Abstract

Second-order rate constants (kN) have been measured spectrophotometrically for reactions of Y-substituted phenyl benzoates (1a-h) with azide ion (N3) in 80 mol % H2O/20 mol % DMSO at 25.0 0.1 oC. The Brnsted-type plot for the azidolysis exhibits a downward curvature, i.e., the slope (b lg) changes from 0.97 to 0.20 as the basicity of the leaving group decreases. The pKao (defined as the pKa at the center of the Brnsted curvature) is 4.8, which is practically identical to the pKa of the conjugate acid of N3 ion (4.73). Hammett plots correlated with s o and s constants exhibit highly scattered points for the azidolysis. On the contrary, the corresponding Yukawa-Tsuno plot results in an excellent linear correlation with r = 2.45 and r = 0.40, indicating that the leaving group departs in the rate-determining step. The curved Brnsted-type plot has been interpreted as a change in the rate-determining step in a stepwise mechanism. The microscopic rate constants (k1 and k2/k1 ratio) have been calculated for the azidolysis and found to be consistent with the proposed mechanism.

Keywords

References

  1. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw-Hill: New York, 1969; pp 480-483
  2. Jencks, W. P.; Gilchrist, M. J. Am. Chem. Soc. 1968, 90, 2622-2637 https://doi.org/10.1021/ja01012a030
  3. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970 https://doi.org/10.1021/ja00463a032
  4. Bruice, T. C.; Fife, T. H.; Bruno, J. J.; Brandon, N. E. Biochemistry 1962, 1, 7-12 https://doi.org/10.1021/bi00907a002
  5. Kirsch, J. F.; Clewell, W.; Simon, A. J. Org. Chem. 1968, 33, 127-132 https://doi.org/10.1021/jo01265a023
  6. Baxter, N. J.; Rigoreau, L. J. M.; Laws, A. P. ; Page, M. I. J. Am. Chem. Soc. 2000, 122, 3375-3385 https://doi.org/10.1021/ja994293b
  7. Zhong, M.; Brauman, J. I. J. Am. Chem. Soc. 1999, 121, 2508-2515 https://doi.org/10.1021/ja973151j
  8. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524 https://doi.org/10.1021/cr990001d
  9. Castro, E. A. J. Org. Chem. 2005, 70, 8088-8092 https://doi.org/10.1021/jo051168b
  10. Castro, E. A. J. Org. Chem. 2003, 68, 5930-5935 https://doi.org/10.1021/jo034385q
  11. Castro, E. A. J. Org. Chem. 2003, 68, 3608-3613 https://doi.org/10.1021/jo034008d
  12. Castro, E. A. J. Org. Chem. 2002, 67, 8911-8916 https://doi.org/10.1021/jo026390k
  13. Castro, E. A. J. Org. Chem. 2001, 66, 6000-6003 https://doi.org/10.1021/jo0100695
  14. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284 https://doi.org/10.1016/j.cplett.2006.06.015
  15. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430 https://doi.org/10.1016/j.cplett.2006.11.002
  16. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629 https://doi.org/10.1021/jo050606b
  17. Park, Y. H.; Lee, O. S.; Koo, I. S.; Yang, K.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 1865-1868 https://doi.org/10.5012/bkcs.2006.27.11.1865
  18. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821 https://doi.org/10.1021/jo0705061
  19. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306 https://doi.org/10.1021/jo052417z
  20. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243 https://doi.org/10.1002/chem.200500647
  21. Um, I. H.; Kim, K. H.; Park, H. R.; Mizue, F.; Yuho, J. J. Org. Chem. 2004, 69, 3937-3942 https://doi.org/10.1021/jo049694a
  22. Um, I. H.; Akhtar, K.; Park, Y. M.; Khan, S. B. Bull. Korean Chem. Soc. 2007, 28, 1353-1357 https://doi.org/10.5012/bkcs.2007.28.8.1353
  23. Um, I. H.; Chun, S. M.; Akhtar, K. Bull. Korean Chem. Soc. 2007, 28, 220-224 https://doi.org/10.5012/bkcs.2007.28.2.220
  24. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444 https://doi.org/10.1021/jo048227q
  25. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172 https://doi.org/10.1021/jo049812u
  26. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185 https://doi.org/10.1021/jo034190i
  27. Um, I. H.; Akhtar, K.; Shin, Y. S.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829 https://doi.org/10.1021/jo070171n
  28. Um, I. H.; Shin, Y. S.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720 https://doi.org/10.1021/jo061308x
  29. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2005, 3, 1468-1475 https://doi.org/10.1039/b501537e
  30. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601-610 https://doi.org/10.1039/b314886f
  31. Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163-167 https://doi.org/10.1039/b208408b
  32. Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53-63 https://doi.org/10.1139/v02-202
  33. Williams, A. Acc. Chem. Res. 1989, 22, 387-392 https://doi.org/10.1021/ar00167a003
  34. Ba-Saif, S.; Luthra, A. K.; Williams, A. J. Am. Chem. Soc. 1987, 109, 6362-6368 https://doi.org/10.1021/ja00255a021
  35. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890-1895 https://doi.org/10.1021/ja00214a037
  36. Deacon, T. C.; Farra, R.; Sikkel, B. J.; Williams, A. J. Am. Chem. Soc. 1978, 100, 2625-2534
  37. Williams, A.; Naylor, J. J. Chem. Soc. B 1971, 1967-1972 https://doi.org/10.1039/j29710001967
  38. Stefanidis, D.; Cho, S.; Dhe-Paganon, S.; Jencks, W. P. J. Am. Chem. Soc. 1993, 115, 1650-1656 https://doi.org/10.1021/ja00058a006
  39. Andres, G. O.; Granados, A. M.; Rossi, R. H. J. Org. Chem. 2001, 66, 7653-7657 https://doi.org/10.1021/jo010499v
  40. Fernandez, M. A.; Rossi, R. H. J. Org. Chem. 1999, 64, 6000-6004 https://doi.org/10.1021/jo990550j
  41. Castro, E. A.; Angel, M.; Arellano, D.; Santos, J. G. J. Org. Chem. 2001, 66, 6571-6575 https://doi.org/10.1021/jo0101252
  42. Castro, E. A.; Pavez, P.; Santos, J. G. J. Org. Chem. 2001, 66, 3129-3132 https://doi.org/10.1021/jo010022j
  43. Castro, E. A.; Pavez, P.; Santos, J. G. J. Org. Chem. 1999, 64, 2310-2313 https://doi.org/10.1021/jo981956j
  44. Cleland, W. W.; Hengge, A. C. Chem. Rev. 2006, 106, 3252-3278 https://doi.org/10.1021/cr050287o
  45. Hengge, A. C. Adv. Phys. Org. Chem. 2005, 40, 49-108 https://doi.org/10.1016/S0065-3160(05)40002-7
  46. Catrina, I.; O'Brien, P. J.; Purcell, J.; Nikolic-Hughes, I.; Zalatan, J. G.; Hengge, A. C.; Herschlag, D. J. Am. Chem. Soc. 2007, 129, 5760-5765 https://doi.org/10.1021/ja069111+
  47. Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61-74 https://doi.org/10.2174/1385272053369349
  48. Onyido, I.; Swierzek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703-7711 https://doi.org/10.1021/ja0501565
  49. Guthrie, J. P. J. Am. Chem. Soc. 1996, 118, 12878-12885 https://doi.org/10.1021/ja961860b
  50. Guthrie, J. P. J. Am. Chem. Soc. 1991, 113, 3941-3949 https://doi.org/10.1021/ja00010a040
  51. Um, I. H.; Hwang, S. J.; Buncel, E. J. Org. Chem. 2006, 71, 915-920 https://doi.org/10.1021/jo051823f
  52. Buncel, E.; Um, I. H.; Hoz, S. J. Am. Chem. Soc. 1989, 111, 971-975 https://doi.org/10.1021/ja00185a029
  53. Cook, R. D.; Farah, S.; Ghawi, L.; Itani, A.; Rahil, J. Can. J. Chem. 1986, 64, 1630-1637 https://doi.org/10.1139/v86-269
  54. Cook, R. D.; Rahhal-Arabi, L. Tetrahedron Lett. 1985, 25, 3147-3150
  55. Han, X.; Balakrishnan, V. K.; Buncel, E. Langmuir 2007, 23, 6519-6525 https://doi.org/10.1021/la063521u
  56. Han, X.; Balakrishnan, V. K.; van Loon, G. W.; Buncel, E. Langmuir 2006, 22, 9009-9017 https://doi.org/10.1021/la060641t
  57. Cheung, J. C. F.; Park, Y. S.; Smith, V. H.; van Loon, G.; Buncel, E.; Churchill, D. Can. J. Chem. 2006, 84, 926 https://doi.org/10.1139/V06-106
  58. Churchill, D.; Cheung, J. C. F.; Park, Y. S.; Smith, V. H.; van Loon, G.; Buncel, E. Can. J. Chem. 2006, 84, 702-708 https://doi.org/10.1139/V06-053
  59. Balakrishnan, V. K.; Buncel, E.; van Loon, G. W. Environ. Sci. Technol. 2005, 39, 5824-5830 https://doi.org/10.1021/es050234o
  60. Balakrishnan, V. K.; Han, X.; van Loon, G. W.; Dust, J. M.; Toullec, J.; Buncel, E. Langmuir 2004, 20, 6586-6593 https://doi.org/10.1021/la049572d
  61. Um, I. H.; Kim, M. J.; Lee, H. W. Chem. Commun. 2000, 2165-2166
  62. Um, I. H.; Lee, J. Y.; Fujio, M.; Tsuno, Y. Org. Biomol. Chem. 2006, 4, 2979-2985 https://doi.org/10.1039/b607194e
  63. Suh, J.; Lee, B. H. J. Org. Chem. 1980, 45, 3103-3107 https://doi.org/10.1021/jo01303a034
  64. Um, I. H.; Park, J. E.; Shin, Y. H. Org. Biomol. Chem. 2007, 5, 3539-3543 https://doi.org/10.1039/b712427a
  65. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385 https://doi.org/10.1016/S0065-3160(08)60009-X
  66. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139 https://doi.org/10.1039/cs9962500129
  67. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970 https://doi.org/10.1246/bcsj.32.965
  68. Castro, E. A.; Moodie, R. B. J. Chem. Soc., Chem. Commun. 1973, 828-829
  69. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6963-6970 https://doi.org/10.1021/ja00463a032
  70. Castro, E. A.; Ureta, C. J. Org. Chem. 1989, 54, 2153-2157 https://doi.org/10.1021/jo00270a026

Cited by

  1. Nucleophilic Substitution Reactions of 2,4-Dinitrophenyl X-Substituted-Benzenesulfonates and Y-Substituted-Phenyl 4-Nitrobenzenesulfonates with Azide Ion: Regioselectivity and Reaction Mechanism vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10259
  2. Kinetics and Mechanism of Nucleophilic Displacement Reactions of Y-Substituted Phenyl Benzoates with Cyanide Ion vol.31, pp.3, 2008, https://doi.org/10.5012/bkcs.2010.31.03.689