DOI QR코드

DOI QR Code

Population and Interconversion of Neutral and Zwitterionic Forms of L-Alanine in Solution

  • Published : 2008.06.20

Abstract

The conformational study on neutral and zwitterionic L-alanines (N-Ala and Z-Ala, respectively) and the transition state (TS) for their interconversion is carried out using ab initio HF and density functional B3LYP methods with the self-consistent reaction field method in the gas phase and in solution. At both the HF and B3LYP levels of theory, the local minimum N1 for N-Ala is found to be most preferred in the gas phase and a weak asymmetric bifurcated hydrogen bond between the amino hydrogens and the carbonyl oxygen appears to play a role in stabilizing this conformation. The local minima N2a and N2b are found to be the second preferred conformations, which seem to be stabilized by a hydrogen bond between the amino nitrogen and the carboxylic hydrogen. The relative stability of the local minimum N2b is remarkably increased in solution than that in the gas phase. The local minimum N2b becomes more stable than the local minimum N2a in most of the solution. On the whole the relative free energies of Z-Ala and TS become more lowered, as the solvent polarity increases. N-Ala prevails over Z-Ala in aprotic solutions but Z-Ala is dominantly populated in ethanol and water. In aprotic solutions, the population of Z-Ala increases somewhat with the increase of solvent polarity. The barrier to Z-Ala-to-N-Ala interconversion increases on the whole with the increase of solvent polarity, which is caused by the increase of stability for Z-Ala.

Keywords

References

  1. Simpson, H. J., Jr.; Marsh, R. E. Acta Cryst. 1966, 20, 550 https://doi.org/10.1107/S0365110X66001221
  2. Lehmann, M. S.; Koetzle, T. F.; Hamilton, W. C. J. Am. Chem. Soc. 1972, 94, 2657 https://doi.org/10.1021/ja00763a016
  3. Edsall, J. T.; Blanchard, M. H. J. Am. Chem. Soc. 1933, 55, 2337 https://doi.org/10.1021/ja01333a019
  4. Ellzy, M. W.; Jensen, J. O.; Hameka, H. F.; Kay, J. G. Spectrochim. Acta, Part A 2003, 59, 2619 https://doi.org/10.1016/S1386-1425(03)00036-2
  5. Godfrey, P. D.; Firth, S.; Hatherley, L. D.; Brown, R. D.; Pierlot, A. P. J. Am. Chem. Soc. 1993, 115, 9687 https://doi.org/10.1021/ja00074a039
  6. Iijima, K.; Nakano, M. J. Mol. Struct. 1999, 485-486, 255 https://doi.org/10.1016/S0022-2860(99)00047-2
  7. Blanco, S.; Lesarri, A.; López, J. C.; Alonso, J. L. J. Am. Chem. Soc. 2004, 126, 11675 https://doi.org/10.1021/ja048317c
  8. Cao, M.; Newton, S. Q.; Pranata, J.; Schafer, L. THEOCHEM 1995, 332, 251 https://doi.org/10.1016/0166-1280(94)03943-F
  9. Gronert, S.; O'Hair, R. A. J. J. Am. Chem. Soc. 1995, 117, 2071 https://doi.org/10.1021/ja00112a022
  10. Csaszar, A. G. J. Phys. Chem. 1996, 100, 3541 https://doi.org/10.1021/jp9533640
  11. Stepanian, S. G.; Reva, I. D.; Radchenko, E. D.; Adamowicz, L. J. Phys. Chem. A 1998, 102, 4623 https://doi.org/10.1021/jp973479z
  12. Selvarengan, P.; Kolandaivel, P. THEOCHEM 2004, 671, 77 https://doi.org/10.1016/j.theochem.2003.10.021
  13. Kumar, S.; Rai, A. K.; Rai, S. B.; Rai, D. K.; Singh, A. N.; Singh, V. B. J. Mol. Struct. 2006, 791, 23 https://doi.org/10.1016/j.molstruc.2006.01.004
  14. Upadhyay, D. M.; Rai, A. K.; Rai, D. K.; Singh, A. N.; Kumar, A. Spectrochim. Acta, Part A 2007, 66, 909 https://doi.org/10.1016/j.saa.2006.04.030
  15. Maul, R.; Ortmann, F.; Preuss, M.; Hannewald, K.; Bechstedt, F. J. Comput. Chem. 2007, 28, 1817 https://doi.org/10.1002/jcc.20683
  16. Gontrani, L.; Mennucci, B.; Tomasi, J. THEOCHEM 2000, 500, 113 https://doi.org/10.1016/S0166-1280(00)00390-0
  17. Frimand, K.; Bohr, H.; Jalkanen, K. J.; Suhai, S. Chem. Phys. 2000, 255, 165 https://doi.org/10.1016/S0301-0104(00)00069-0
  18. Jalkanen, K. J.; Nieminen, R. M.; Frimand, K.; Bohr, J.; Bohr, H.; Wade, R. C.; Tajkhorshid, E.; Suhai, S. Chem. Phys. 2001, 265, 125 https://doi.org/10.1016/S0301-0104(01)00267-1
  19. Abdali, S.; Jalkanen, K. J.; Bohr, H.; Suhai, S.; Nieminen, R. M. Chem. Phys. 2002, 282, 219 https://doi.org/10.1016/S0301-0104(02)00642-0
  20. Ahn, D.-S.; Park, S.-W.; Jeon, I.-S.; Lee, M.-K.; Kim, N.-H.; Han, Y.-H.; Lee, S. J. Phys. Chem. B 2003, 107, 14109 https://doi.org/10.1021/jp031041v
  21. Chuchev, K.; BelBruno, J. J. THEOCHEM 2008, 850, 111 https://doi.org/10.1016/j.theochem.2007.10.026
  22. Cao, X.; Fischer, G. Spectrochim. Acta, Part A 1999, 55, 2329 https://doi.org/10.1016/S1386-1425(99)00133-X
  23. Cao, X.; Fischer, G. Chem. Phys. 2000, 255, 195 https://doi.org/10.1016/S0301-0104(00)00082-3
  24. Sambrano, J. R.; de Sousa, A. R.; Queralt, J. J.; Andrés, J.; Longo, E. Chem. Phys. Lett. 1998, 294, 1 https://doi.org/10.1016/S0009-2614(98)00820-3
  25. Nobrega, G. F.; Sambrano, J. R.; de Souza, A. R.; Queralt, J. J.; Longo, E. THEOCHEM 2001, 544, 151 https://doi.org/10.1016/S0166-1280(01)00374-8
  26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford, CT, 2004
  27. Vasquez, M.; Nemethy, G.; Scheraga, H. A. Macromolecules 1983, 16, 1043 https://doi.org/10.1021/ma00241a004
  28. Frisch, A.; Dennington, R. D., II; Keith, T. A. GaussView, version 3.0; Gaussian, Inc.: Pittsburgh, PA, 2003
  29. Peng, C.; Schlegel, H. B. Israel J. Chem. 1993, 33, 449 https://doi.org/10.1002/ijch.199300051
  30. Frisch, A.; Frisch, M. J.; Trucks, G. W. Gaussian 03 User's Reference, version 7.0; Gaussian, Inc.: Pittsburgh, PA, 2003
  31. Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995 https://doi.org/10.1021/jp9716997
  32. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669 https://doi.org/10.1002/jcc.10189
  33. Barone, V.; Cossi, M.; Tomasi, J. J. Chem. Phys. 1997, 107, 3210 https://doi.org/10.1063/1.474671
  34. Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys. 2002, 117, 43 https://doi.org/10.1063/1.1480445
  35. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999 https://doi.org/10.1021/cr9904009
  36. Takano, Y.; Houk, K. N. J. Chem. Theory Comput. 2005, 1, 70 https://doi.org/10.1021/ct049977a
  37. Kang, Y. K. THEOCHEM 2001, 546, 183 https://doi.org/10.1016/S0166-1280(01)00445-6
  38. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley & Sons: New York, 1986; Chapter 6

Cited by

  1. Kinetics and Mechanism for the Formation of b- and y-type Ions from Singly Protonated Peptides on a Microsecond Time Scale: The Arginine Mystery vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2427
  2. Comprehensive Studies on the Free Energies of Solvation and Conformers of Glycine: A Theoretical Study vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1985
  3. Conformational preferences of γ-aminobutyric acid in the gas phase and in water vol.1024, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2012.04.080
  4. q-GRID: A New Method To Calculate Lattice and Interaction Energies for Molecular Crystals from Electron Densities vol.16, pp.2, 2008, https://doi.org/10.1021/acs.cgd.5b01164