DOI QR코드

DOI QR Code

Effects of Nanometer Sized Silver Materials on Biological Toxicity During Zebrafish Embryogenesis

  • Yeo, Min-Kyeong (Department of Environmental Science and Engineering, KyungHee University) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University, Gyeongsan)
  • Published : 2008.06.20

Abstract

Commercial nanometer sized silver is widely used for its antibacterial effect; however, nanoparticles may also have ecotoxicological effects after being discharged into water. Nanometer sized silver can flow into aquatic environments, where it can exert a variety of physiologically effects in living organisms, including fish. The present study aimed to investigate the effect of nanometer sized silver on the development of zebrafish embryos, analyze the properties of commercial nanometer sized silver and define the toxicity relationship between embryogenesis and hatched flies. The commercial nanometer sized silver was analyzed in the $Ag^+$ ion form. The hatch rate decreased in the nano-silver exposed groups (10 and 20 ppt); furthermore, the hatched flies had an abnormal notochord, weak heart beat, damaged eyes and curved tail. The expression of the Sel N1 gene decreased in the nano-silver exposed groups, and the catalase activities of the exposed groups increased relative to those in the control group. Therefore, the $Ag^+$ ions in commercial nanometer sized silver could accumulate in aquatic environments and seriously damage the development of zebrafish embryos.

Keywords

References

  1. Lee, H. J.; Yeo, S. Y.; Jeong, S. H. J. Mater. Sci. 2003, 38, 2199 https://doi.org/10.1023/A:1023736416361
  2. Harper, T. Nano Korea (), 2003
  3. Hamouda, T.; Hayes, M. M.; Cao, Z.; Tonda, R.; Johnson, K.; Wright, D. C. J. Infect. D 1999, 180, 1939 https://doi.org/10.1086/315124
  4. Sondi, I.; Salopek-Sondi, B. J. Colloid Interf. Sci. 2004, 275, 177 https://doi.org/10.1016/j.jcis.2004.02.012
  5. Lundborg, M.; Johansson, A.; Lastbom, L.; Camner, P. Environ. Res. 1999, 81, 309 https://doi.org/10.1006/enrs.1999.3992
  6. Lundborg, M.; Johard, U.; Lastbom, L.; Gerde, P.; Camner, P. Environ. Res. 2001, 86, 244 https://doi.org/10.1006/enrs.2001.4269
  7. Rederstorff, M.; Krol, A.; Lescure, A. Cell Mol. Life Sci. 2006, 63, 52 https://doi.org/10.1007/s00018-005-5313-y
  8. Moller, W.; Hofer, T.; Ziesenis, A.; Karg, E.; Heyder, J. Toxicol. Appl. Pharm. 2002, 182, 197 https://doi.org/10.1006/taap.2002.9430
  9. Yeo, M. K.; Jo, Y. H. J. Environ. Sci. 2007, 22, 189
  10. Reijnders, L. J. Clean Prod. 2006, 14, 124 https://doi.org/10.1016/j.jclepro.2005.03.018
  11. Yeo, M. K.; Lee, J. Y. J. Environ. Sci. 2006, 15, 471 https://doi.org/10.5322/JES.2006.15.5.471
  12. Deniziak, M.; Thisse, C.; Rederstorff, M.; Hindelang, C.; Lescure, A.; Thisse, B. Exp. Cell Res. 2007, 313, 156 https://doi.org/10.1016/j.yexcr.2006.10.005
  13. Chitra, K. C.; Latchoumycandane, C.; Mathur, P. P. Toxicology 2003, 185, 119 https://doi.org/10.1016/S0300-483X(02)00597-8
  14. Kabuto, H.; Hasuike, S.; Minagawa, N.; Shishibori, T. Environ. Res. 2003, 93, 31 https://doi.org/10.1016/S0013-9351(03)00062-8
  15. Kabuto, H.; Amakawa, M.; Shishibori, T. Life Sci. 2004, 74, 2931 https://doi.org/10.1016/j.lfs.2003.07.060
  16. Yeo, M. K. Kor. J. Env. Hlth. 2003, 29, 1
  17. Kimmel, W.; Ballard, S.; Ullman, B. K.; Schilling, T. Dev. Dynam. 1995, 203, 253 https://doi.org/10.1002/aja.1002030302
  18. Berger, T. J.; Spadaro, J. A.; Chapin, S. E.; Becker, R. O. Antimicrob. Agents Ch. 1976, 7, 357
  19. Chung, H.; Kim, B.; Yang, H. J. Kor. Soc. Cloth. Text. 2005, 29, 805
  20. Lambert, A. L.; Mangum, J. B.; DELorme, M. P.; Everitt, J. I. Toxicol. Sci. 2003, 72, 339 https://doi.org/10.1093/toxsci/kfg032
  21. Renwick, L. C.; Donaldson, K.; Clouter, A. Toxicol. Appl. Pharm. 2001, 172, 119 https://doi.org/10.1006/taap.2001.9128
  22. Brooker, R. J.; Slayman, C. W. J. Biol. Chem. 1983, 258, 8833
  23. Black, C. B.; Huang, H. W.; Cowan, J. A. Coordin. Chem. Rev. 1994, 135, 165 https://doi.org/10.1016/0010-8545(94)80068-5
  24. Hossain, Z.; Huq, F. J. Inorg. Biochem. 2002, 91, 398 https://doi.org/10.1016/S0162-0134(02)00454-3
  25. Miriam, A.; Moriarty, E. D.; Martin, L. B.; Maura, G. Biochem. Biophys. Res. Commun. 2008, 367, 124 https://doi.org/10.1016/j.bbrc.2007.12.106
  26. Bloemink, M. J.; Reedijk, J. In Metal Ions in Biological Systems; Sigel, A.; Sigel, H., Eds.; Marcel Dekker: New York, 1996; Vol. 32, p 641

Cited by

  1. Potential risks of the natural nanoparticles from the acid mine drainage and a novel approach for their toxicity assessment vol.2, pp.4, 2010, https://doi.org/10.1007/BF03217486
  2. Review: Do engineered nanoparticles pose a significant threat to the aquatic environment? vol.40, pp.7, 2010, https://doi.org/10.3109/10408444.2010.494174
  3. Aggregation Study of Ag-TiO<sub>2</sub> Composites vol.02, pp.12, 2011, https://doi.org/10.4236/msa.2011.212229
  4. Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida) vol.20, pp.2, 2011, https://doi.org/10.1007/s10646-010-0590-0
  5. ) vol.5, pp.3, 2011, https://doi.org/10.3109/17435390.2010.537382
  6. High Content Screening in Zebrafish Speeds up Hazard Ranking of Transition Metal Oxide Nanoparticles vol.5, pp.9, 2011, https://doi.org/10.1021/nn202116p
  7. Influence of Nanofinishes on the Antimicrobial Properties of Fabrics vol.2012, pp.2090-8741, 2012, https://doi.org/10.5402/2012/193836
  8. Effects of silver nanoparticles on zebrafish (Danio rerio) and Escherichia coli (ATCC 25922): A comparison of toxicity based on total surface area versus mass concentration of particles in a model eukaryotic and prokaryotic system vol.31, pp.8, 2012, https://doi.org/10.1002/etc.1881
  9. ) vol.46, pp.18, 2012, https://doi.org/10.1021/es3017717
  10. Interactions of Hydroxyapatite with Proteins and Its Toxicological Effect to Zebrafish Embryos Development vol.7, pp.4, 2012, https://doi.org/10.1371/journal.pone.0032818
  11. The biological toxicities of two crystalline phases and differential sizes of TiO2 nanoparticles during zebrafish embryogenesis development vol.8, pp.4, 2012, https://doi.org/10.1007/s13273-012-0039-z
  12. ) embryos vol.7, pp.8, 2013, https://doi.org/10.3109/17435390.2012.737484
  13. Nanosilver: application and novel aspects of toxicology vol.87, pp.4, 2013, https://doi.org/10.1007/s00204-012-1007-z
  14. Comparison of gene expression changes induced by exposure to Ag, Cu-TiO2, and TiO2 nanoparticles in zebrafish embryos vol.9, pp.2, 2013, https://doi.org/10.1007/s13273-013-0017-0
  15. Uptake and bioaccumulation of titanium- and silver-nanoparticles in aquatic ecosystems vol.10, pp.1, 2014, https://doi.org/10.1007/s13273-014-0002-2
  16. ZnO Nano Reactor on Textiles and Polymers: Ex Situ and In Situ Synthesis, Application, and Characterization vol.118, pp.6, 2014, https://doi.org/10.1021/jp408532r
  17. Perturbation of physiological systems by nanoparticles vol.43, pp.10, 2014, https://doi.org/10.1039/C3CS60338E
  18. Salinity increases the toxicity of silver nanocolloids to Japanese medaka embryos vol.2, pp.1, 2015, https://doi.org/10.1039/C4EN00175C
  19. Synthesis of Silver Abietate as an Antibacterial Agent for Textile Applications vol.2015, pp.1687-479X, 2015, https://doi.org/10.1155/2015/215354
  20. Surface Structure of Silver Nanoparticles as a Model for Understanding the Oxidative Dissolution of Silver Ions vol.31, pp.49, 2015, https://doi.org/10.1021/acs.langmuir.5b03686
  21. ) exposed to silver nanoparticles vol.13, pp.6, 2016, https://doi.org/10.1080/1547691X.2016.1242673
  22. Assessment of cultured fish hepatocytes for studying cellular uptake and (eco)toxicity of nanoparticles vol.7, pp.1, 2010, https://doi.org/10.1071/EN09125
  23. Agglomeration of Silver Nanoparticles in Sea Urchin pp.19292732, 2012, https://doi.org/10.11159/ijepr.2012.007
  24. ) Nanoparticles Through Food: A Molecular and Morphological Study in Zebrafish vol.11, pp.6, 2014, https://doi.org/10.1089/zeb.2014.1037
  25. Effects of silver nanocolloids on plant complex type N-glycans in Oryza sativa roots vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-19474-z
  26. Silver nanoparticles in sewage treatment plant effluents: chronic effects and accumulation of silver in the freshwater amphipod Hyalella azteca vol.30, pp.1, 2018, https://doi.org/10.1186/s12302-018-0137-1
  27. The surface reactivity of iron oxide nanoparticles as a potential hazard for aquatic environments: A study on Daphnia magna adults and embryos vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-31483-6
  28. Effects of Cu x TiO y nanometer particles on biological toxicity during zebrafish embryogenesis vol.26, pp.3, 2009, https://doi.org/10.1007/s11814-009-0119-5
  29. Ecotoxicity and analysis of nanomaterials in the aquatic environment vol.393, pp.1, 2009, https://doi.org/10.1007/s00216-008-2458-1
  30. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment vol.12, pp.5, 2010, https://doi.org/10.1007/s11051-010-9900-y
  31. The effect of nano-scale Zn-doped TiO2 and pure TiO2 particles on Hydra magnipapillata vol.6, pp.1, 2010, https://doi.org/10.1007/s13273-010-0002-9
  32. Gene expression in zebrafish embryos following exposure to TiO2 nanoparticles vol.6, pp.1, 2010, https://doi.org/10.1007/s13273-010-0013-6
  33. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis) vol.96, pp.2, 2008, https://doi.org/10.1016/j.aquatox.2009.10.019
  34. Effects of Aqueous Exposure to Silver Nanoparticles of Different Sizes in Rainbow Trout vol.115, pp.2, 2008, https://doi.org/10.1093/toxsci/kfq076
  35. Role of Particle Size and Soil Type in Toxicity of Silver Nanoparticles to Earthworms vol.75, pp.2, 2008, https://doi.org/10.2136/sssaj2010.0127nps
  36. Silver nanoparticles: Behaviour and effects in the aquatic environment vol.37, pp.2, 2008, https://doi.org/10.1016/j.envint.2010.10.012
  37. Simultaneous dispersion–dissolution behavior of concentrated silver nanoparticle suspensions in the presence of model organic solutes vol.84, pp.8, 2011, https://doi.org/10.1016/j.chemosphere.2011.04.040
  38. Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus) vol.24, pp.6, 2008, https://doi.org/10.1016/s1001-0742(11)60845-0
  39. Toxicity Assessments of Near-infrared Upconversion Luminescent LaF 3 :Yb,Er in Early Development of Zebrafish Embryos vol.3, pp.4, 2008, https://doi.org/10.7150/thno.5701
  40. Molecular toxicity mechanism of nanosilver vol.22, pp.1, 2008, https://doi.org/10.1016/j.jfda.2014.01.010
  41. Acute embryonic exposure to nanosilver or silver ion does not disrupt the stress response in zebrafish (Danio rerio) larvae and adults vol.478, pp.None, 2014, https://doi.org/10.1016/j.scitotenv.2014.01.077
  42. Histopathological effects of waterborne silver nanoparticles and silver salt on the gills and liver of goldfish Carassius auratus vol.13, pp.7, 2008, https://doi.org/10.1007/s13762-016-0972-9
  43. Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity vol.10, pp.32, 2018, https://doi.org/10.1021/acsami.8b08832
  44. The Interactive Effect of Dietary Curcumin and Silver Nanoparticles on Gut Microbiota of Common Carp (Cyprinus carpio) vol.42, pp.2, 2018, https://doi.org/10.1007/s40995-016-0130-8
  45. Reduction in Toxicity of Nano-Ag-Polyvinyl-pyrrolidone Using Hydra Proteins and Peptides during Zebrafish Embryogenesis vol.9, pp.9, 2008, https://doi.org/10.3390/nano9091210
  46. Toxicological study of metal and metal oxide nanoparticles in zebrafish vol.40, pp.1, 2020, https://doi.org/10.1002/jat.3910
  47. Nanoparticles induced embryo-fetal toxicity vol.36, pp.3, 2008, https://doi.org/10.1177/0748233720918689
  48. What do we Really Know about Nanotoxicology of Silver Nanoparticles In vivo? New Aspects, Possible Mechanisms, and Perspectives vol.16, pp.3, 2008, https://doi.org/10.2174/1573413714666180809121322
  49. Effects of nanosilver on hematologic, histologic and molecular parameters of rainbow trout (Oncorhynchus mykiss) vol.225, pp.None, 2020, https://doi.org/10.1016/j.aquatox.2020.105549
  50. Highly fluorescent carbon dots from wheat bran as a novel drug delivery system for bacterial inhibition vol.35, pp.6, 2020, https://doi.org/10.1002/bio.3801
  51. A review of the effects of metallic nanoparticles on fish vol.90, pp.3, 2008, https://doi.org/10.2754/avb202190030331