DOI QR코드

DOI QR Code

Antiapoptotic Effect of Aurintricarboxylic Acid; Extracellular Action versus Inhibition of Cytosolic Protein Tyrosine Phosphatases

  • Lee, Dong-Yoon (Department of Chemistry and Institute of Molecular Cell Biology, Inha University) ;
  • Kim, Mee-Kyung (Department of Microbiology, Inha University College of Medicine) ;
  • Kim, Mi-Jeong (Department of Microbiology, Inha University College of Medicine) ;
  • Bhattarai, Bharatraj (Department of Chemistry and Institute of Molecular Cell Biology, Inha University) ;
  • Kafle, Bhooshan (Department of Chemistry and Institute of Molecular Cell Biology, Inha University) ;
  • Lee, Keun-Hyeung (Department of Chemistry and Institute of Molecular Cell Biology, Inha University) ;
  • Kang, Jae-Seung (Department of Microbiology, Inha University College of Medicine) ;
  • Cho, Hyeong-Jin (Department of Chemistry and Institute of Molecular Cell Biology, Inha University)
  • Published : 2008.02.20

Abstract

Aurintricarboxylic acid (ATA) prevents apoptosis in a wide range of cell types, including PC12 cells. ATA is known to increase the phosphorylation level of IGF-1 receptor (IGF-1R) and downstream signaling proteins. ATA can translocate across the plasma membrane of PC12 cells and inhibit protein tyrosine phosphatases (PTPs) and, therefore, it is not clear whether ATA exerted its antiapoptotic effect through activation of IGF-1R or by inhibition of cytosolic PTPs. When PC12 cells, deprived of serum, were treated with Fab fragment of anti-IGF-1R antibody to prevent the binding of ATA to the extracellular domain of IGF-1R, ATA was found to penetrate into the cytosolic space of the cells. Under these conditions, the survival-promoting effects of ATA were abolished, and the increase of phosphorylation and characteristic cleavage of IGF-1R were not observed. These results indicate that the antiapoptotic effect of ATA in PC12 cells is due to the binding of ATA to the extracellular domain of IGF-1R and subsequent activation of the IGF-1R, not inhibition of cytosolic PTP(s).

Keywords

References

  1. Wang, P.; Kozlowski, J.; Cushman, M. J. Org. Chem. 1992, 57, 3861-3866 https://doi.org/10.1021/jo00040a027
  2. Weinstein, M.; Vosburgh, E.; Philips, M.; Turner, N.; Chute-Rose, L.; Moake, J. Blood 1991, 78, 2291-2298
  3. Seki, S.; Tsutsui, K.; Oda, T. Biochem. Biophys. Res. Commun. 1977, 79, 179-184 https://doi.org/10.1016/0006-291X(77)90077-8
  4. Nakane, H.; Balzarini, J.; De Clercq, E.; Ono, K. Eur. J. Biochem. 1988, 177, 91-96 https://doi.org/10.1111/j.1432-1033.1988.tb14348.x
  5. Baba, M.; Schols, D.; Pauwels, R.; Balzarini, J.; De Clercq, E. Biochem. Biophys. Res. Commun. 1988, 155, 1404-1411 https://doi.org/10.1016/S0006-291X(88)81297-X
  6. Batistatou, A.; Greene, L. A. J. Cell Biol. 1991, 115, 461-471 https://doi.org/10.1083/jcb.115.2.461
  7. Hallick, R. B.; Chelm, B. K.; Gray, P. W.; Orozco, E. M. Nucleic Acids Res. 1977, 4, 3055-3064 https://doi.org/10.1093/nar/4.9.3055
  8. Catchpoole, D. R.; Stewart, B. W. Anticancer Res. 1994, 14, 853- 856
  9. Bina-Stein, M.; Tritton, T. R. Mol. Pharmacol. 1976, 12, 191-193
  10. Benchokroun, Y.; Couprie, J.; Larsen, A. K. Biochem. Phram. 1995, 49, 305-313 https://doi.org/10.1016/0006-2952(94)00465-X
  11. Thompson, D. C.; Reed, M. Toxicol. Lett. 1995, 81, 141-149 https://doi.org/10.1016/0378-4274(95)03418-8
  12. Carias, J. R.; Julien, R FEBS Lett. 1975, 56, 303-306 https://doi.org/10.1016/0014-5793(75)81114-8
  13. McCune, S. A.; Foe, L. G.; Kemp, R. G.; Jurin, R. R. Biochem. J. 1989, 259, 925-927 https://doi.org/10.1042/bj2590925
  14. Hibasami, H.; Tanaka, M.; Nagai, J. Chem. Biol. Interact. 1982, 40, 319-323 https://doi.org/10.1016/0009-2797(82)90154-5
  15. Cho, H.; Lee, D. Y.; Shrestha, S.; Shim, Y. S.; Kim, K. C.; Kim, M.- K.; Lee, K.-H.; Won, J.; Kang, J.-S. Mol. Cells 2004, 18, 46-52
  16. Liang, F.; Huang, Z.; Lee, S.-Y.; Liang, J.; Ivanov, M. I.; Alonso, A.; Bliska, J. B.; Lawrence, D. S.; Mustelin, T.; Zhang, Z.-Y. J. Biol. Chem. 2003, 278, 41734-41741 https://doi.org/10.1074/jbc.M307152200
  17. Batistatou, A.; Greene, L. A. J. Cell Biol. 1993, 122, 523-532 https://doi.org/10.1083/jcb.122.3.523
  18. Mesner, P. W.; Winters, T. R.; Green, S. H. J. Cell Biol. 1992, 119, 1669-1680 https://doi.org/10.1083/jcb.119.6.1669
  19. Tsi, C.-J.; Chao, Y.; Chen, C.-W.; Lin, W.-W. Mol. Pharmacol. 2002, 101, 90-101
  20. Haimsohn, M.; Beery, R.; Karasik, A.; Kanety, H.; Geiger, A. Endocrinology 2002, 143, 837-845 https://doi.org/10.1210/en.143.3.837
  21. Beery, R.; Haimsohn, M.; Wertheim, N.; Hemi, R.; Nir, U.; Karasik, A.; Kanety, H.; Geiger, A. Endocrinology 2001, 142, 3098-3107 https://doi.org/10.1210/en.142.7.3098
  22. Okada, N.; Koizumi, S. J. Biol. Chem. 1995, 270, 16464-16469 https://doi.org/10.1074/jbc.270.27.16464
  23. Bradford, M. M. Anal. Biochem. 1976, 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3

Cited by

  1. Metal Ions in Aqueous Solution vol.56, pp.10, 2011, https://doi.org/10.1021/je200528f
  2. B3(Fab)-streptavidin Tetramer Has Higher Binding Avidity than B3(scFv)-streptavidin Tetramer vol.30, pp.5, 2008, https://doi.org/10.5012/bkcs.2009.30.5.1101
  3. Determination of Protonation Constants of Viral Inhibitor, Aurintricarboxylic Acid in SDS and CTAB Micellar Media: A Potentiometric Study vol.33, pp.10, 2021, https://doi.org/10.14233/ajchem.2021.23318