• Title/Summary/Keyword: Aurintricarboxylic acid

Search Result 3, Processing Time 0.017 seconds

Antiapoptotic Effect of Aurintricarboxylic Acid; Extracellular Action versus Inhibition of Cytosolic Protein Tyrosine Phosphatases

  • Lee, Dong-Yoon;Kim, Mee-Kyung;Kim, Mi-Jeong;Bhattarai, Bharatraj;Kafle, Bhooshan;Lee, Keun-Hyeung;Kang, Jae-Seung;Cho, Hyeong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.342-346
    • /
    • 2008
  • Aurintricarboxylic acid (ATA) prevents apoptosis in a wide range of cell types, including PC12 cells. ATA is known to increase the phosphorylation level of IGF-1 receptor (IGF-1R) and downstream signaling proteins. ATA can translocate across the plasma membrane of PC12 cells and inhibit protein tyrosine phosphatases (PTPs) and, therefore, it is not clear whether ATA exerted its antiapoptotic effect through activation of IGF-1R or by inhibition of cytosolic PTPs. When PC12 cells, deprived of serum, were treated with Fab fragment of anti-IGF-1R antibody to prevent the binding of ATA to the extracellular domain of IGF-1R, ATA was found to penetrate into the cytosolic space of the cells. Under these conditions, the survival-promoting effects of ATA were abolished, and the increase of phosphorylation and characteristic cleavage of IGF-1R were not observed. These results indicate that the antiapoptotic effect of ATA in PC12 cells is due to the binding of ATA to the extracellular domain of IGF-1R and subsequent activation of the IGF-1R, not inhibition of cytosolic PTP(s).

Protoplast Isolation and Genetic Transformation of Polyporus brumalis (겨울우산버섯의 원형질체 분리와 유전자 형질전환)

  • Ryu, Sun-Hwa;Kim, Myung-Kil
    • Korean Journal of Microbiology
    • /
    • v.50 no.4
    • /
    • pp.372-375
    • /
    • 2014
  • This experiment was undertaken to investigate proper conditions for protoplast isolation and genetic transformation of the white rot fungi, Polyporus brumalis. The protoplasts were formed from mycelia at a frequency of $1{\times}10^7/ml$ with 0.5% Usukizyme. The transformation vector (pHYgpt) was constructed using hygromycin resistance gene (hph) for the selectable maker. The yield was 100-160 transformants/${\mu}g$ DNA in a transformation mediated by 40% polyethylene glycol solution with aurintricarboxylic acid, heparin and supermidine. The genomic integration of the pHYgpt was confirmed by hph-specific PCR and the expected amplified band appeared only in the transformants. These results could be an efficient tool in gene engineering of the genus polyporus.