DOI QR코드

DOI QR Code

A Kinetic Study on Michael-type Reactions of 1-(X-Substituted Phenyl)-2-propyn-1-ones with Amines: Effect of Amine Nature on Reactivity and Mechanism

  • Um, Ik-Hwan (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Hwang, So-Jeong (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Lee, Eun-Ju (Division of Nano Sciences and Department of Chemistry, Ewha Womans University)
  • Published : 2008.04.20

Abstract

Second-order rate constants have been measured spectrophotometrically for the Michael-type reaction of 1-(Xsubstituted phenyl)-2-propyn-1-ones (2a-f) with amines in $H_2O$ at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. A linear Brønsted-type plot is obtained with ${\beta}_{nuc}$ = 0.25 ${\pm}$ 0.02, a typical $\beta_{nuc}$ value for reactions which proceed through a stepwise mechanism with attack of amine on the electrophilic center being the rate-determining step. Secondary alicyclic amines are found to be more reactive than isobasic primary amines. The Hammett plot for the reactions of 2a-f with morpholine is not linear, i.e., the substrate with a strong electron-donating group (e.g., 4-MeO) exhibits a negative deviation from the Hammett plot. However, the Yukawa-Tsuno plot for the same reactions exhibits an excellent linear correlation with ρ = 0.62 and r = 0.82. Thus, it has been proposed that the nonlinear Hammett plot is not due to a change in the ra te-determining step but due to ground-state stabilization through resonance interactions.

Keywords

References

  1. Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301-308 https://doi.org/10.1021/ar00140a006
  2. Bernasconi, C. F. Tetrahedron 1989, 45, 4017-4090 https://doi.org/10.1016/S0040-4020(01)81304-1
  3. Kutyrev, A. A.; Moskva, V. V. Russ. Chem. Rev. 1991, 60, 72-106 https://doi.org/10.1070/RC1991v060n01ABEH001032
  4. Ali, M.; Biswas, S.; Rappoport, Z.; Bernasconi, C. F. J. Phy. Org. Chem. 2006, 19, 647-653 https://doi.org/10.1002/poc.1109
  5. Bernasconi, C. F.; Ali, M.; Nguyen, K.; Ruddat, V.; Rappoport, Z. J. Org. Chem. 2004, 69, 9248-9254 https://doi.org/10.1021/jo040244s
  6. Bernasconi, C. F.; Leyer, A. E.; Rappoport, Z. J. Org. Chem. 1999, 64, 2897-2902 https://doi.org/10.1021/jo990044u
  7. Bernasconi, C. F.; Zitomer, J. L.; Schuck, D. F. J. Org. Chem. 1992, 57, 1131-1139
  8. Bernasconi, C. F.; Stronach, M. W. J. Am. Chem. Soc. 1990, 112, 8448-8454 https://doi.org/10.1021/ja00179a032
  9. Bernasconi, C. F.; Murray, C. J. J. Am. Chem. Soc. 1986, 108, 5251-5257 https://doi.org/10.1021/ja00277a032
  10. Sung, D. D.; Kang, S. S.; Lee, J. P.; Jung, D. I.; Ryu, Z. H.; Lee, I. Bull. Korean Chem. Soc. 2007, 28, 1670-1674 https://doi.org/10.5012/bkcs.2007.28.10.1670
  11. Ku, M. H.; Oh, H. K.; Ko, S. Bull. Korean Chem. Soc. 2007, 28, 1217-1220 https://doi.org/10.5012/bkcs.2007.28.7.1217
  12. Oh, H. K.; Lee, J. M.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 3089-3093 https://doi.org/10.1021/jo047832q
  13. Oh, H. K.; Kim, I. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2004, 69, 3806-3810 https://doi.org/10.1021/jo034370s
  14. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 5391-5395 https://doi.org/10.1021/jo000512w
  15. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 2188-2191 https://doi.org/10.1021/jo991823d
  16. Varghese, B.; Kothari, S.; Banerji, K. K. Int. J. Chem. Kinet. 1999, 31, 245-252 https://doi.org/10.1002/(SICI)1097-4601(1999)31:4<245::AID-KIN1>3.0.CO;2-V
  17. Varghese, B.; Kothari, S.; Banerji, K. K. J. Chem. Res. (S) 1998, 422
  18. Jalani, N.; Kothari, S.; Banerji, K. K. Can. J. Chem. 1996, 74, 625-629 https://doi.org/10.1139/v96-067
  19. Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon: Oxford, 1992
  20. Truce, W. E.; Onken, D. W. J. Org. Chem. 1975, 40, 3200-3208 https://doi.org/10.1021/jo00910a008
  21. Truce, W. E.; Heuring, D. L.; Wolf, G. C. J. Org. Chem. 1974, 39, 238-244 https://doi.org/10.1021/jo00916a027
  22. Truce, W. E.; Tichenor, G. J. J. Org. Chem. 1972, 37, 2391-2396 https://doi.org/10.1021/jo00980a007
  23. Sun, X.; Sengupta, S.; Petersen, J. L.; Wang, H.; Lewis, J. P.; Shi, X. Org. Lett. 2007, 9, 4495-4498 https://doi.org/10.1021/ol702059x
  24. Sopbue Fondjo, E.; Doepp, D.; Henkel, G. Tetrahedron 2006, 62, 7121-7131 https://doi.org/10.1016/j.tet.2006.04.037
  25. Crisp, G. T.; Millan, M. J. Tetrahedron 1998, 4, 637-648
  26. Sinsky, M. S.; Bass, R. G. J. Heterocyclic Chem. 1984, 21, 759-768 https://doi.org/10.1002/jhet.5570210325
  27. Shen, Z.; Lu, X. Tetrahedron 2006, 62, 10896-10899 https://doi.org/10.1016/j.tet.2006.08.086
  28. Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70, 4059-4063 https://doi.org/10.1021/jo050121n
  29. Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031-5041 https://doi.org/10.1021/jo9723063
  30. Ma, S.; Lu, X.; Li, Z. J. Org. Chem. 1992, 57, 709-713 https://doi.org/10.1021/jo00028a055
  31. Ma, S.; Lu, X. J. Chem. Soc., Chem. Commun. 1990, 1643-1644
  32. Um, I. H.; Lee, J. S.; Yuk, S. M. J. Org. Chem. 1998, 63, 9152-9153 https://doi.org/10.1021/jo9816459
  33. Um, I. H.; Lee, E. J.; Seok, J. A.; Kim, K. H. J. Org. Chem. 2005, 70, 7530-7536 https://doi.org/10.1021/jo050624t
  34. Um, I. H.; Lee, E. J.; Min, J. S. Tetrahedron 2001, 57, 9585-9589 https://doi.org/10.1016/S0040-4020(01)00981-4
  35. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159
  36. Jencks, W. P. Chem. Rev. 1985, 85, 511-527 https://doi.org/10.1021/cr00070a001
  37. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524 https://doi.org/10.1021/cr990001d
  38. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, U.K., 1997; Chapter 7
  39. Castro, E. A.; Aliaga, M.; Gazitua, M.; Santos, J. G. Tetrahedron 2006, 62, 4869
  40. Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez, J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555-2562 https://doi.org/10.1016/j.tet.2005.12.044
  41. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092 https://doi.org/10.1021/jo051168b
  42. Campodonico, P. R.; Fuentealba, P.; Castro, E. A.; Santos, J. G.; Contreras, R. J. Org. Chem. 2005, 70, 1754-1760 https://doi.org/10.1021/jo048127k
  43. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629 https://doi.org/10.1021/jo050606b
  44. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244 https://doi.org/10.1039/b500251f
  45. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 9285-9288 https://doi.org/10.1021/jo0484676
  46. Oh, H. K.; Park, J. E.; Sung, D. D.; Lee, I. J. Org. Chem. 2004, 69, 3150-3153 https://doi.org/10.1021/jo049845+
  47. Um, I. H.; Chun, S. M.; Akhtar, K. Bull. Korean Chem. Soc. 2007, 28, 220-224 https://doi.org/10.5012/bkcs.2007.28.2.220
  48. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821 https://doi.org/10.1021/jo0705061
  49. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243 https://doi.org/10.1002/chem.200500647
  50. Um, I. H.; Kim, E. J.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306 https://doi.org/10.1021/jo052417z
  51. Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987 https://doi.org/10.1021/jo050172k
  52. Um, I. H.; Han, H. J.; Baek, M. H.; Bae, S. K. J. Org. Chem. 2004, 69, 6365-6370 https://doi.org/10.1021/jo0492160
  53. Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2004, 69, 2436-2441 https://doi.org/10.1021/jo035854r
  54. Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746 https://doi.org/10.1021/jo034637n
  55. Gregory, M. J.; Bruice, T. C. J. Am. Chem. Soc. 1967, 89, 2327-2330 https://doi.org/10.1021/ja00986a014
  56. Bruice, T. C.; Donzel, A.; Huffman, R. W.; Butler, A. R. J. Am. Chem. Soc. 1967, 89, 2106-2121 https://doi.org/10.1021/ja00985a023
  57. Bernasconi, C. F.; Hibdon, S. A. J. Am. Chem. Soc. 1983, 105, 4343-4348 https://doi.org/10.1021/ja00351a037
  58. Bernasconi, C. F.; Perez-Lorenzo, M.; Brown, S. D. J. Org. Chem. 2007, 72, 4416-4423 https://doi.org/10.1021/jo070372r
  59. Spencer, T. A.; Kendall, M. C. R.; Reingold, I. D. J. Am. Chem. Soc. 1972, 94, 1250-1254 https://doi.org/10.1021/ja00759a035
  60. Yagil, G.; Anbar, M. J. Am. Chem. Soc. 1962, 84, 1797-1803 https://doi.org/10.1021/ja00869a005
  61. Kirby, A. J.; Jencks, W. P. J. Am. Chem. Soc. 1965, 87, 3209-3216 https://doi.org/10.1021/ja01092a036
  62. Benkovic, S. J.; Benkovic, P. A. J. Am. Chem. Soc. 1966, 88, 5504-5511 https://doi.org/10.1021/ja00975a026
  63. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803 https://doi.org/10.1021/jo0606958
  64. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663 https://doi.org/10.1021/jo000482x
  65. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444 https://doi.org/10.1021/jo048227q
  66. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172 https://doi.org/10.1021/jo049812u
  67. Um, I. H.; Lee, J. Y.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2004, 69, 2436-2441 https://doi.org/10.1021/jo035854r
  68. Um, I. H.; Han, H. J.; Ahn, J. A.; Kang, S.; Buncel, E. J. Org. Chem. 2002, 67, 8475-8480 https://doi.org/10.1021/jo026339g
  69. Tsuno, Y.; Fujio, M. Adv. Phys. Org. Chem. 1999, 32, 267-385 https://doi.org/10.1016/S0065-3160(08)60009-X
  70. Tsuno, Y.; Fujio, M. Chem. Soc. Rev. 1996, 25, 129-139 https://doi.org/10.1039/cs9962500129
  71. Yukawa, Y.; Tsuno, Y. Bull. Chem. Soc. Jpn. 1959, 32, 965-970 https://doi.org/10.1246/bcsj.32.965
  72. Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946, 39-45 https://doi.org/10.1039/jr9460000039
  73. Bagley, M. C.; Dale, J. W.; Ohnesorge, M.; Xiong, X.; Bower, J. J. Comb. Chem. 2003, 5, 41-44 https://doi.org/10.1021/cc020067d
  74. McMullen, C. H.; Stirling, C. J. M. J. Chem. Soc. 1966, 1221-1223
  75. Jones, E. R. H.; McCombie, J. T. J. Chem. Soc. 1942, 733-735 https://doi.org/10.1039/jr9420000733
  76. Hennion, G. F.; Murray, W. S. J. Am. Chem. Soc. 1942, 64, 1220-1222 https://doi.org/10.1021/ja01257a059
  77. Froning, J. F.; Hennion, G. F. J. Am. Chem. Soc. 1940, 62, 653-655 https://doi.org/10.1021/ja01860a065

Cited by

  1. Measurement and Estimation of Electrophilic Reactivity for Predictive Toxicology vol.111, pp.4, 2011, https://doi.org/10.1021/cr100098n
  2. Mechanism and Linear Free Energy Relationships in Michael-Type Addition of 4-Substituted Anilines to Activated Olefin in Acetonitrile vol.45, pp.12, 2013, https://doi.org/10.1002/kin.20811
  3. Solvent Effect on Kinetics and Mechanism of the Phospha-Michael Reaction of Tertiary Phosphines with Unsaturated Carboxylic Acids vol.25, pp.3, 2014, https://doi.org/10.1002/hc.21161
  4. Effects of substituents on activation parameter changes in the Michael-type reactions of nucleophilic addition to activated alkenes and alkynes in solution vol.147, pp.2, 2016, https://doi.org/10.1007/s00706-015-1622-5
  5. A Kinetic Study on Nucleophilic Displacement Reactions of Phenyl Y-Substituted-Phenyl Carbonates with Alkali Metal Ethoxides: Metal Ion Effect and Reaction Mechanism vol.85, pp.9, 2012, https://doi.org/10.1246/bcsj.20120104
  6. Kinetic Study on Michael-type Reactions of 1-Phenyl-2-propyn-1-one with Alicyclic Secondary Amines: Effect of Medium on Reactivity and Mechanism vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.1911
  7. Michael-type Reactions of 1-(X-substituted phenyl)-2-propyn-1-ones with Alicyclic Secondary Amines in MeCN and H2O: Effect of Medium on Reactivity and Transition-State Structure vol.31, pp.5, 2008, https://doi.org/10.5012/bkcs.2010.31.5.1199
  8. Examination of Michael addition reactivity towards glutathione by transition-state calculations vol.21, pp.7, 2008, https://doi.org/10.1080/1062936x.2010.528943