DOI QR코드

DOI QR Code

Kinetic Study on Michael-type Reactions of 1-Phenyl-2-propyn-1-one with Alicyclic Secondary Amines: Effect of Medium on Reactivity and Mechanism

  • Hwang, So-Jeong (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Park, Youn-Min (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Published : 2008.10.20

Abstract

Second-order rate constants (kN) have been measured for Michael-type addition reactions of a series of alicyclic secondary amines to 1-phenyl-2-propyn-1-one (2) in MeCN at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. All the amines studied are less reactive in MeCN than in $H_2O$ although they are more basic in the aprotic solvent by 7-9 p$K_a$ units. The Bronsted-type plot is linear with $\beta_{nuc}$ = 0.40, which is slightly larger than that reported previously for the corresponding reactions in $H_2O$ ($\beta_{nuc}$ = 0.27). Product analysis has shown that only E-isomer is produced. Kinetic isotope effect is absent for the reactions of 2 with morpholine and deuterated morpholine (i.e., $k^H/k^D$ = 1.0). Thus, the reaction has been concluded to proceed through a stepwise mechanism, in which proton transfer occurs after the rate-determining step. The reaction has been suggested to proceed through a tighter transition state in MeCN than in H2O on the basis of the larger $\beta_{nuc}$ in the aprotic solvent. The nature of the transition state has been proposed to be responsible for the decreased reactivity in the aprotic solvent.

Keywords

References

  1. Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301- 308 https://doi.org/10.1021/ar00140a006
  2. Bernasconi, C. F. Tetrahedron 1989, 45, 4017-4090 https://doi.org/10.1016/S0040-4020(01)81304-1
  3. Kutyrev, A. A.; Moskva, V. V. Russ. Chem. Rev. 1991, 60, 72- 106 https://doi.org/10.1070/RC1991v060n01ABEH001032
  4. Ali, M.; Biswas, S.; Rappoport, Z.; Bernasconi, C. F. J. Phy. Org. Chem. 2006, 19, 647-653 https://doi.org/10.1002/poc.1109
  5. Bernasconi, C. F.; Ali, M.; Nguyen, K.; Ruddat, V.; Rappoport, Z. J. Org. Chem. 2004, 69, 9248-9254 https://doi.org/10.1021/jo040244s
  6. Bernasconi, C. F.; Leyer, A. E.; Rappoport, Z. J. Org. Chem. 1999, 64, 2897-2902 https://doi.org/10.1021/jo990044u
  7. Bernasconi, C. F.; Zitomer, J. L.; Schuck, D. F. J. Org. Chem. 1992, 57, 1131-1139
  8. Bernasconi, C. F.; Stronach, M. W. J. Am. Chem. Soc. 1990, 112, 8448-8454 https://doi.org/10.1021/ja00179a032
  9. Sung, D. D.; Kang, S. S.; Lee, J. P.; Jung, D. I.; Ryu, Z. H.; Lee, I. Bull. Korean Chem. Soc. 2007, 28, 1670-1674 https://doi.org/10.5012/bkcs.2007.28.10.1670
  10. Ku, M. H.; Oh, H. K.; Ko, S. Bull. Korean Chem. Soc. 2007, 28, 1217- 1220 https://doi.org/10.5012/bkcs.2007.28.7.1217
  11. Oh, H. K.; Lee, J. M.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 3089-3093 https://doi.org/10.1021/jo047832q
  12. Oh, H. K.; Kim, I. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2004, 69, 3806-3810 https://doi.org/10.1021/jo034370s
  13. Oh, H. K.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 5391-5395 https://doi.org/10.1021/jo000512w
  14. Varghese, B.; Kothari, S.; Banerji, K. K. Int. J. Chem. Kinet. 1999, 31, 245-252 https://doi.org/10.1002/(SICI)1097-4601(1999)31:4<245::AID-KIN1>3.0.CO;2-V
  15. Varghese, B.; Kothari, S.; Banerji, K. K. J. Chem. Res. (S) 1998, 422
  16. Jalani, N.; Kothari, S.; Banerji, K. K. Can. J. Chem. 1996, 74, 625-629 https://doi.org/10.1139/v96-067
  17. Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon: Oxford, 1992, and references cited therein
  18. Truce, W. E.; Onken, D. W. J. Org. Chem. 1975, 40, 3200- 3208 https://doi.org/10.1021/jo00910a008
  19. Truce, W. E.; Heuring, D. L.; Wolf, G. C. J. Org. Chem. 1974, 39, 238-244 https://doi.org/10.1021/jo00916a027
  20. Truce, W. E.; Tichenor, G. J. J. Org. Chem. 1972, 37, 2391-2396 https://doi.org/10.1021/jo00980a007
  21. Sobenina, L. N.; Demenev, A. P.; Mikhaleva, A. I.; Elokhina, V. N.; Stepanova, Z. V.; Mal'kina, A. G.; Ushakov, I. A.; Trofimov, B. A. Russ. J. Org. Chem. 2001, 37, 547-551 https://doi.org/10.1023/A:1012438104138
  22. Potapov, V. A.; Amosova, S. V.; Starkova, A. A.; Zhnikin, A. R.; Doron'Kina, I. V.; Beletskaya, I. P.; Hevesi, L. Sulf. Lett. 2000, 23, 229-238
  23. Trofimov, B. A.; Stepanova, Z. V.; Sobenina, L. N.; Mikhaleva, A. I.; Vakul'skaya, T. I.; Elokhina, V. N.; Ushakov, I. A.; Toryashinova, D.-S. D.; Kositsyna, E. I. Russ. Chem. Bull. 1999, 48, 1542-1547 https://doi.org/10.1007/BF02496409
  24. Cai, M.; Chen, G.; Hao, W.; Wang, D. Synlett 2006, 20, 3492- 3494. (e) Ramazani, A.; Kardan, M.; Noshiranzadeh, N. Syn. Commun. 2008, 38, 383-390 https://doi.org/10.1080/00397910701771058
  25. Sun, X.; Sengupta, S.; Petersen, J. L.; Wang, H.; Lewis, J. P.; Shi, X. Org. Lett. 2007, 9, 4495-4498 https://doi.org/10.1021/ol702059x
  26. Sopbue Fondjo, E.; Doepp, D.; Henkel, G. Tetrahedron 2006, 62, 7121-7131 https://doi.org/10.1016/j.tet.2006.04.037
  27. Crisp, G. T.; Millan, M. J. Tetrahedron 1998, 4, 637-648
  28. Sinsky, M. S.; Bass, R. G. J. Heterocyclic Chem. 1984, 21, 759-768 https://doi.org/10.1002/jhet.5570210325
  29. Shen, Z.; Lu, X. Tetrahedron 2006, 62, 10896-10899 https://doi.org/10.1016/j.tet.2006.08.086
  30. Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70, 4059-4063 https://doi.org/10.1021/jo050121n
  31. Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031-5041 https://doi.org/10.1021/jo9723063
  32. Ma, S.; Lu, X.; Li, Z. J. Org. Chem. 1992, 57, 709-713 https://doi.org/10.1021/jo00028a055
  33. Ma, S.; Lu, X. J. Chem. Soc., Chem. Commun. 1990, 1643-1644
  34. Um, I. H.; Lee, J. S.; Yuk, S. M. J. Org. Chem. 1998, 63, 9152- 9153 https://doi.org/10.1021/jo9816459
  35. Um, I. H.; Lee, E. J.; Seok, J. A.; Kim, K. H. J. Org. Chem. 2005, 70, 7530-7536 https://doi.org/10.1021/jo050624t
  36. Um, I. H.; Lee, E. J.; Min, J. S. Tetrahedron 2001, 57, 9585-9589 https://doi.org/10.1016/S0040-4020(01)00981-4
  37. Um, I. H.; Hwang, S. J. Bull. Korean Chem. Soc. 2008, 29, 767-771 https://doi.org/10.5012/bkcs.2008.29.4.767
  38. Spillane, W. J.; McGrath, P.; Brack, C.; O'Byrne, A. B. J. Org. Chem. 2001, 66, 6313-6316 https://doi.org/10.1021/jo015691b
  39. Jencks, W. P.; Regenstein, F. Handbook of Biochemistry. Selected Data for Molecular Biology; Sober, H. A., Ed.; The Chemical Rubber Co.: 1968
  40. Castro, E. A.; Santos, J. G.; Tellez, J.; Umana, M. I. J. Org. Chem. 1997, 62, 6568
  41. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159
  42. Advanced in Linear Free Energy Relationships; Chapman, N. B.; Shorter, J., Eds.; Plenum: London, 1972
  43. Jencks, W. P. Chem. Rev. 1985, 85, 511-527 https://doi.org/10.1021/cr00070a001
  44. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524 https://doi.org/10.1021/cr990001d
  45. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, U.K., 1997; Chapter 7
  46. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Phy. Org. Chem. 2008, 21, 271 https://doi.org/10.1002/poc.1312
  47. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Leis, J. R.; Garcia-Rio, L.; Santos, J. G. J. Phy. Org. Chem. 2008, 21, 102 https://doi.org/10.1002/poc.1286
  48. Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P. S.; Santos, J. G. J. Phy. Org. Chem. 2008, 21, 62 https://doi.org/10.1002/poc.1285
  49. Castro, E. A.; Aliaga, M.; Gazitua, M.; Santos, J. G. Tetrahedron 2006, 62, 4863-4869 https://doi.org/10.1016/j.tet.2006.03.013
  50. Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez, J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555-2562 https://doi.org/10.1016/j.tet.2005.12.044
  51. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088- 8092 https://doi.org/10.1021/jo051168b
  52. Campodonico, P. R.; Fuentealba, P.; Castro, E. A.; Santos, J. G.; Contreras, R. J. Org. Chem. 2005, 70, 1754-1760 https://doi.org/10.1021/jo048127k
  53. Hwang, J.; Yang, K.; Koo, I. S.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 1086. (b) Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phy. Lett. 2006, 426, 280-284 https://doi.org/10.1016/j.cplett.2006.06.015
  54. Hwang, J.; Yang, K.; Koo, I. S.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 733-738 https://doi.org/10.5012/bkcs.2006.27.5.733
  55. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629 https://doi.org/10.1021/jo050606b
  56. Um, I. H.; Yoon, S. R.; Park, H. R.; Han, H. J. Org. Biomol. Chem. 2008, 6, 1618-1624 https://doi.org/10.1039/b801422a
  57. Um, I. H.; Min, S. W.; Dust, J. M. J. Org. Chem. 2007, 72, 8797-8803 https://doi.org/10.1021/jo701549h
  58. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816- 4821 https://doi.org/10.1021/jo0705061
  59. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829 https://doi.org/10.1021/jo070171n
  60. Um, I. H.; Chun, S. M.; Akhtar, K. Bull. Korean Chem. Soc. 2007, 28, 220-224 https://doi.org/10.5012/bkcs.2007.28.2.220
  61. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821 https://doi.org/10.1021/jo0705061
  62. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243 https://doi.org/10.1002/chem.200500647
  63. Um, I. H.; Kim, E. J.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306 https://doi.org/10.1021/jo052417z
  64. Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987 https://doi.org/10.1021/jo050172k
  65. Goitein, R.; Bruice, T. C. J. Phys. Chem. 1972, 76, 432-434 https://doi.org/10.1021/j100647a024
  66. Um, I. H.; Lee, E. J.; Jeon, S. E. J. Phys. Org. Chem. 2002, 15, 561-565 https://doi.org/10.1002/poc.483
  67. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J.2006, 12, 1237-1243 https://doi.org/10.1002/chem.200500647
  68. Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946, 39-45 https://doi.org/10.1039/jr9460000039
  69. Bagley, M. C.; Dale, J. W.; Ohnesorge, M.; Xiong, X.; Bower, J. J. Comb. Chem. 2003, 5, 41-44 https://doi.org/10.1021/cc020067d
  70. McMullen, C. H.; Stirling, C. J. M. J. Chem. Soc. 1966, 1221-1223

Cited by

  1. Kinetics and Mechanism of Michael-type Reactions of Ethyl Propiolate with Alicyclic Secondary Amines in H2O and MeCN: Solvent Effect on Reactivity and Transition-State Structure vol.30, pp.12, 2009, https://doi.org/10.5012/bkcs.2009.30.12.2909
  2. Evidence for Hypervalent Intermediate in Aminolysis Reaction of Ethylbenzene Sulfinate vol.30, pp.2, 2008, https://doi.org/10.5012/bkcs.2009.30.2.493
  3. Aminolysis of Methylbenzene Sulfinate: Definitive Evidence for a Stepwise Mechanism vol.30, pp.8, 2008, https://doi.org/10.5012/bkcs.2009.30.8.1893
  4. Michael-type Reactions of 1-(X-substituted phenyl)-2-propyn-1-ones with Alicyclic Secondary Amines in MeCN and H2O: Effect of Medium on Reactivity and Transition-State Structure vol.31, pp.5, 2008, https://doi.org/10.5012/bkcs.2010.31.5.1199