DOI QR코드

DOI QR Code

Real-time Acquisition of Three Dimensional NMR Spectra by Non-uniform Sampling and Maximum Entropy Processing

  • Jee, Jun-Goo (Center for Priority Areas, Tokyo Metropolitan University)
  • Published : 2008.10.20

Abstract

Of the experiments to shorten NMR measuring time by sparse sampling, non-uniform sampling (NUS) is advantageous. NUS miminizes systematic errors which arise due to the lack of samplings by randomization. In this study, I report the real-time acquisition of 3D NMR data using NUS and maximum-entropy (MaxEnt) data processing. The real-time acquisition combined with NUS can reduce NMR measuring time much more. Compared with multidimensional decomposition (MDD) method, which was originally suggested by Jaravine and Orekhov (JACS 2006, 13421-13426), MaxEnt is faster at least several times and more suitable for the realtime acquisition. The designed sampling schedule of current study makes all the spectra during acquisition have the comparable resulting resolutions by MaxEnt. Therefore, one can judge the quality of spectra easily by examining the intensities of peaks. I report two cases of 3D experiments as examples with the simulated subdataset from experimental data. In both cases, the spectra having good qualitie for data analysis could be obtained only with 3% of original data. Its corresponding NMR measuring time was 8 minutes for 3D HNCO of ubiquitin.

Keywords

References

  1. Kim, S.; Szyperski, T. J. Am. Chem. Soc. 2003, 125, 1385-1393 https://doi.org/10.1021/ja028197d
  2. Kupce, E.; Freeman, R. J. Am. Chem. Soc. 2003, 125, 13958- 13959 https://doi.org/10.1021/ja038297z
  3. Rovnyak, D.; Frueh, D. P.; Sastry, M.; Sun, Z. Y.; Stern, A. S.; Hoch, J. C.; Wagner, G. J. Magn. Reson. 2004, 170, 15-21 https://doi.org/10.1016/j.jmr.2004.05.016
  4. Kazimierczuk, K.; Kozminski, W.; Zhukov, I. J. Magn. Reson. 2006, 179, 323-328 https://doi.org/10.1016/j.jmr.2006.02.001
  5. Orekhov, V. Y.; Ibraghimov, I.; Billeter, M. J. Biomol. NMR 2003, 27, 165-173 https://doi.org/10.1023/A:1024944720653
  6. Kazimierczuk, K.; Zawadzka, A.; Kozminski, W.; Zhukov, I. J. Am. Chem. Soc. 2008, 130, 5404-5405 https://doi.org/10.1021/ja800622p
  7. Jaravine, V.; Ibraghimov, I.; Orekhov, V. Y. Nat. Methods 2006, 3, 605-607 https://doi.org/10.1038/nmeth900
  8. Tugarinov, V.; Kay, L. E.; Ibraghimov, I.; Orekhov, V. Y. J. Am. Chem. Soc. 2005, 127, 2767-2775 https://doi.org/10.1021/ja044032o
  9. Jaravine, V. A.; Orekhov, V. Y. J. Am. Chem. Soc. 2006, 128, 13421-13426 https://doi.org/10.1021/ja062146p
  10. Jee, J.; Byeon, I. J.; Louis, J. M.; Gronenborn, A. M. Proteins 2008, 71, 1420-1431 https://doi.org/10.1002/prot.21831
  11. Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J. Biomol. NMR 1995, 6, 277-293
  12. Hoch, J. C.; Stern, A. S. Methods Enzymol 2001, 338, 159-178
  13. Schanda, P.; Van Melckebeke, H.; Brutscher, B. J. Am. Chem. Soc. 2006, 128, 9042-9043 https://doi.org/10.1021/ja062025p

Cited by

  1. Reconstruction of Self-Sparse 2D NMR Spectra from Undersampled Data in the Indirect Dimension vol.11, pp.9, 2011, https://doi.org/10.3390/s110908888
  2. Application of Non-uniform Sampling to Three Dimensional Carbon Direct-detection NMR Experiment vol.32, pp.10, 2008, https://doi.org/10.5012/bkcs.2011.32.10.3551