DOI QR코드

DOI QR Code

Gallium(III) Ion Hydrolysis under Physiological Conditions

  • Hacht, Brahim (Laboratoire de Speciation et de Surveillance de la Pollution en Mediterranee. University Mohammed 1st, Faculty of Sciences, Department of Chemistry)
  • Published : 2008.02.20

Abstract

The hydrolysis of gallium(III) has been studied using potentiometric techniques under physiological conditions of temperature 37 C and ionic strength 0.15 moldm-3 NaCl and at different metal ion concentrations. Changes in pH were monitored with a glass electrode calibrated daily in hydrogen ions concentrations. The titration data within the pH range of 2.5-9.99 were analyzed to determine stability constants of hydroxide species using the SUPERQUAD program. Several different species were considered during the calculation procedure and the following hydroxides have been characterized: Ga(OH)3, Ga(OH)4- Ga3(OH)112-, Ga4(OH)11+ and Ga6(OH)153+. Speciation calculations based on the determined constants were then used to simulate the species distribution.

Keywords

References

  1. Harris, W. R.; Martell, A. E. Inorg. Chem. 1976, 15, 713-720 https://doi.org/10.1021/ic50157a044
  2. Power, M. B.; Cleaver, W. M.; Apblett, A. W.; Barron, A. R.; Ziller, J. W. Polyhedron 1992, 11, 477-486 https://doi.org/10.1016/S0277-5387(00)83205-2
  3. Jackson, G. E.; Byrne, M. J. J. Nucl. Med. 1996, 37, 379-386
  4. Uchida, M.; Okuwaki, A. J. Solution Chem. 1998, 27, 965-978 https://doi.org/10.1023/A:1022631803191
  5. Michot, L. J.; Montargès-Pelletier, E.; Lartiges, B. S.; d'Espinose de la Caillerie, J.-B.; Briois, V. J. Am. Chem. Soc. 2000, 122, 6048-6056 https://doi.org/10.1021/ja9941429
  6. Anderson, C. J.; Welch, M. J. Chem. Rev. 1999, 99, 2219-2234 https://doi.org/10.1021/cr980451q
  7. Galanski, M.; Arion, V. B.; Jakupec, M. A.; Keppler, B. K. Curr. Pharm. Des. 2003, 9, 2078-2089 https://doi.org/10.2174/1381612033454180
  8. Jakupec, M. A.; Keppler, B. K. Curr. Top. Med. Chem. 2004, 4, 1575-1583 https://doi.org/10.2174/1568026043387449
  9. Frezza, M.; Verani, C. N.; Chen, D.; Ping Dou, Q. Letters in Drug Design & Discovery 2007, 4, 311-317 https://doi.org/10.2174/157018007780867799
  10. Clausen, M.; Ohman, L.-O.; Persson, P. J. Inorg. Biochem. 2005, 99, 716-726 https://doi.org/10.1016/j.jinorgbio.2004.12.007
  11. Bradley, S. M.; Kydd, R. A.; Yamdagni, R. J. Chem. Soc., Dalton Trans. 1990, 413-417
  12. Bradley, S. M.; Kydd, R. A.; Yamdagni, R. J. Chem. Soc., Dalton Trans. 1990, 2653-2656
  13. Bradley, S. M.; Kydd, R. A. J. Chem. Soc., Dalton Trans. 1993, 2407-2413
  14. Baes, Jr., C. F.; Mesmer, R. E. The Hydrolysis of Cations; Krieger Publishing Company: Malabar, Florida, 1986; p 489
  15. Wood, S. A.; Samson, I. M. Ore Geology Reviews 2006, 28, 57- 102 https://doi.org/10.1016/j.oregeorev.2003.06.002
  16. Bernstein, L. R. Pharmacological Reviews 1998, 50, 665-682
  17. Schwarzenbach, G. Complexometric Titrations; Metuhen and Co.: London, 1957
  18. Dyrssen, D.; Jagner, D.; Wengelin, F. Computer Calculations of Ionic Equilibria and Titration Procedures; Wiley: London, 1968
  19. Rossotti, H. The Study of Ionic Equilibria; Longman: London, 1978
  20. Linder, P. W.; Torrington, R. G.; Williams, D. R. Analysis Using Glass Electrodes; Open University Press: Milton Keynes, 1984
  21. Gans, P.; Sabatini, A.; Vacca, A. J. Chem. Soc. Dalton Trans. 1985, 1195-1200
  22. Kloprogge, J. T.; Seykens, D.; Jansen, J. B. H.; Geus, J. W. J. Non-Cryst. Solids 1992, 142, 94-102 https://doi.org/10.1016/S0022-3093(05)80011-0
  23. Kloprogge, J. T.; Seykens, D.; Jansen, J. B. H.; Geus, J. W. J. Non-Cryst. Solids 1993, 160, 144-151 https://doi.org/10.1016/0022-3093(93)90294-8
  24. Morgado, Jr., E.; Lam, Y. L.; Nazar, L. F. J. Colloid Interface Sci. 1997, 188, 257-269 https://doi.org/10.1006/jcis.1997.4780
  25. Brown, P. L. J. Chem. Soc. Dalton Trans. 1989, 399-402
  26. Venturini, M.; Berthon, G. J. Chem. Soc. Dalton Trans. 1987, 1145-1148
  27. Hacht, B.; Taaya, H. J. Solution Chem. 2006, 35, 215-230 https://doi.org/10.1007/s10953-006-9367-8
  28. Hacht, B.; Taaya, H.; Benayad, A.; Mimouni, M. J. Solution Chem. 2002, 31, 757-769 https://doi.org/10.1023/A:1021185024891
  29. Sylva, R. N.; Davidson, M. R. J. Chem. Soc. Dalton Trans. 1979, 232-235
  30. Van Gaans, P. F. M. Chem. Geol. 1993, 104, 139-154 https://doi.org/10.1016/0009-2541(93)90147-B
  31. Nazarenko, V. A.; Antonovich, V. P.; Nevskaya, E. M. Russ. J. Inorg. Chem. 1968, 13, 825-828
  32. Biryuk, E. A.; Nazarenko, V. A. J. Inorg. Chem. 1973, 18, 1576- 1578 https://doi.org/10.1021/ic50196a037
  33. Hacht, B. SIMDIS, Unpublished Computer Program, 2007

Cited by

  1. Influence of Novel Gallium Complexes on the Homeostasis of Some Biochemical and Hematological Parameters in Rats vol.155, pp.3, 2013, https://doi.org/10.1007/s12011-013-9796-3
  2. Tailored Gallium(III) Chelator NOPO: Synthesis, Characterization, Bioconjugation, and Application in Preclinical Ga-68-PET Imaging vol.11, pp.11, 2014, https://doi.org/10.1021/mp400642s
  3. The Influence of the Combination of Carboxylate and Phosphinate Pendant Arms in 1,4,7-Triazacyclononane-Based Chelators on Their 68Ga Labelling Properties vol.20, pp.7, 2015, https://doi.org/10.3390/molecules200713112
  4. Ga-DOTATATE formulations intended for neuroendocrine tumour imaging vol.58, pp.9, 2015, https://doi.org/10.1002/jlcr.3318
  5. ) complexes of quinolone antimicrobials vol.45, pp.33, 2016, https://doi.org/10.1039/C6DT01315E
  6. The effect of purification of Ga-68-labeled exendin on in vivo distribution vol.6, pp.1, 2016, https://doi.org/10.1186/s13550-016-0221-8
  7. Complexes with Etifenin and Analogues vol.642, pp.6, 2016, https://doi.org/10.1002/zaac.201600016
  8. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling vol.7, pp.78, 2017, https://doi.org/10.1039/C7RA09076E
  9. Ga(III) complexes-The effect of metal coordination on potential systemic absorption after topical exposure vol.202, pp.3, 2011, https://doi.org/10.1016/j.toxlet.2011.01.017
  10. Zinc-rich Ga1-xZnxN1-xOx solid solutions with tunable composition prepared from a constant-pH coprecipitation method vol.207, pp.None, 2008, https://doi.org/10.1088/1757-899x/207/1/012006
  11. Intricacies of the Determination of the Radiochemical Purity of 68Ga Preparations: Possibility of Sorption of Ionic 68Ga Species on Reversed-Phase Columns vol.60, pp.6, 2008, https://doi.org/10.1134/s1066362218060103
  12. Directed Evolution and Engineering of Gallium-Binding Phage Clones-A Preliminary Study vol.4, pp.2, 2019, https://doi.org/10.3390/biomimetics4020035
  13. PIDAZTA: Structurally Constrained Chelators for the Efficient Formation of Stable Gallium‐68 Complexes at Physiological pH vol.25, pp.45, 2019, https://doi.org/10.1002/chem.201901512
  14. Exploring Serum Transferrin Regulation of Nonferric Metal Therapeutic Function and Toxicity vol.8, pp.9, 2008, https://doi.org/10.3390/inorganics8090048
  15. Towards Facile Radiolabeling and Preparation of Gallium-68-/Bismuth-213-DOTA-[Thi8, Met(O2)11]-Substance P for Future Clinical Application: First Experiences vol.13, pp.9, 2008, https://doi.org/10.3390/pharmaceutics13091326