DOI QR코드

DOI QR Code

Ring Flipping of Seven-membered and Eight-membered Dithienodisila-heterocycles

  • Lee, In-Sook (Department of Chemistry, Kyungpook National University) ;
  • Kwak, Young-Woo (Department of Chemistry, Kyungpook National University) ;
  • Ghosh, Manikkumer (Department of Chemistry, Kyungpook National University) ;
  • Ohshita, Joji (Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University) ;
  • Choi, Cheol-Ho (Department of Chemistry, Kyungpook National University)
  • Published : 2008.02.20

Abstract

Ground state structures and ring flipping transition states of eight- and seven-membered silicon containing heterocyclic compounds such as dithienodisilacyclooctatriene and oxadithienodisilacycloheptadiene derivatives, respectively have theoretically been investigated. Although the bithienylene moiety of the derivatives does not change the ground state structures, they significantly increase the ring flipping barrier by 13-17 kcal/mol in the case of the eight-membered rings (2, 3, and 4) in comparison with that of silicon containing heterocyclic compound 6, chosen as a model. The same moiety increases the flipping barrier of seven-membered ring (5) is only slightly (3.3 kcal/mol) in comparison with that of model compound 7. Hence, it has been concluded that not only the existing ring strain of eight-membered ring but also the bithienylene moiety collectively increases the ring flipping barrier so as to prevent such conformational changes explaining anomalous NMR behaviour of dithienodisilacyclooctatriene derivatives (2-4). In contrast, the effect of substituents R1 and R2 at the olefinic carbons of the eight-membered ring on the flipping barrier turned out to be mild.

Keywords

References

  1. Buemi, G.; Zuccarello, F.; Grasso, D. J. Mol. Struct. 1977, 42, 195 https://doi.org/10.1016/0022-2860(77)87043-9
  2. Anet, F. A. L.; Yavari, I. Tetrahedron Letters 1975, 4221. 2. Sakurai, H.; Kamiyama, Y.; Nakadaira, Y. J. Am. Chem. Soc. 1975, 97, 931 https://doi.org/10.1021/ja00837a061
  3. Mochida, K.; Wada, T.; Suzuki, K.; Hatanaka, W.; Nishiyama, Y.; Nanjo, M.; Sekine, A.; Ohashi, Y.; Sakamoto, M.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2001, 74, 123 https://doi.org/10.1246/bcsj.74.123
  4. Yoshida, H.; Ikadai, J.; Shudo, M.; Ohshita, J.; Kunai, A. J. Am. Chem. Soc. 2003, 125, 6638 https://doi.org/10.1021/ja034571d
  5. Yoshida, H.; Ikadai, J.; Shudo, M.; Ohshita, J.; Kunai, A. Organometallics 2005, 24, 156 https://doi.org/10.1021/om049276w
  6. Nakadaira, Y.; Sakurai, H. J. Organomet. Chem. 1973, 47, 61 https://doi.org/10.1016/S0022-328X(00)92840-7
  7. Kwak, Y.-W.; Lee, I.-S.; Baek, M.-K.; Lee, U.; Choi, H.-J.; Ishikawa, M.; Naka, A.; Ohshita, J.; Lee, K.-H.; Kunai, A. Organometallics 2006, 25, 48 https://doi.org/10.1021/om050375z
  8. Ohshita, J.; Nodono, M.; Kai, H.; Watanabe, T.; Kunai, A.; Komaguchi, K.; Shiotani, M.; Adachi, A.; Okita, K.; Harima, Y.; Yamashita, K.; Ishikawa, M. Organometallics 1999, 18, 1453 https://doi.org/10.1021/om980918n
  9. Tamao, K.; Hayashi, T.; Kumada, M. J. Organomet. Chem. 1976, 114, C19 https://doi.org/10.1016/S0022-328X(00)87240-X
  10. Carlson, C. W.; West, R. Organometallics 1983, 2, 1801 https://doi.org/10.1021/om50006a017
  11. Seyferth, D.; Goldman, E. W.; Escudie, J. J. Organomet. Chem. 1984, 271, 337 https://doi.org/10.1016/0022-328X(84)85187-6
  12. Yamashita, H.; Tanaka, M. Chem. Lett. 1992, 1547
  13. Finckh, W.; Tang, B. Z.; Lough, A.; Manners, I. Organometallics 1992, 11, 2904 https://doi.org/10.1021/om00044a034
  14. Kusukawa, T.; Kabe, Y.; Ando, W. Chem. Lett. 1993, 985
  15. Murakami, M.; Yoshida, T.; Ito, Y. Organometallics 1994, 13, 2900 https://doi.org/10.1021/om00019a055
  16. Sharma, H. K.; Pannell, K. H. Chem. Rev. 1995, 95, 1351 https://doi.org/10.1021/cr00037a010
  17. Horn, K. A. Chem Rev. 1995, 95, 1317 https://doi.org/10.1021/cr00037a009
  18. Suginome, M.; Ito, Y. Chem, Rev. 2000, 100, 3221 https://doi.org/10.1021/cr9902805
  19. Naka, A.; Yoshida, K.; Ishikawa, M.; Miyahara, I.; Hirotsu, K.; Cha, S.-H.; Lee, K.-K.; Kwak, Y.-W. Organometallics 2001, 20, 1204 https://doi.org/10.1021/om000908y
  20. Cha, S.-H.; Lee, K.-K.; Kwak, Y.-W.; Choi, H.-J.; Park, Y. S.; Naka, A.; Ishikawa, M. Organometallics 2001, 20, 3718 https://doi.org/10.1021/om010228a
  21. Suginome, M.; Ito, Y. J. Organomet. Chem. 2003, 685, 218 https://doi.org/10.1016/S0022-328X(03)00163-3
  22. Ishikawa, M.; Ikadai, J.; Naka, A.; Ohshita, J.; Kunai, A.; Yoshizawa, K.; Kang, S.-Y.; Yamabe, T. Organometallics 2001, 20, 1059 https://doi.org/10.1021/om000909q
  23. Naka, A.; Ikadai, J.; Sakata, J.; Miyahara, I.; Hirotsu, K.; Ishikawa, M. Organometallics 2004, 23, 2397 https://doi.org/10.1021/om030508l
  24. Espinosa, A.; Gallo, M. A.; Entrena, A.; Gomez, J. A. J. Mol. Struct. 1994, 323, 247 https://doi.org/10.1016/0022-2860(93)07978-6
  25. Schmidt, M. W.; Balbridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. Jr. J. Comp. Chem. 1993, 14, 1347 https://doi.org/10.1002/jcc.540141112
  26. Fletcher, G. D.; Schmidt, M. W.; Gordon, M. S. Adv. Chem. Physics. 1999, 110, 267 https://doi.org/10.1002/9780470141694.ch4
  27. Herhe, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257 https://doi.org/10.1063/1.1677527
  28. Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523 https://doi.org/10.1021/j100377a021
  29. Gonzalez, C.; Schelegel, H. B. J. Chem. Phys. 1991, 95, 5853 https://doi.org/10.1063/1.461606