DOI QR코드

DOI QR Code

Formation of Complex XeHCl+ in the Xe++ HCl Collision

  • Ree, Jong-Baik (Department of Chemistry Education, Chonnam National University) ;
  • Kim, Yoo-Hang (Department of Chemistry and Center for Chemical Dynamics) ;
  • Shin, Hyung-Kyu (Department of Chemistry, University of Nevada)
  • Published : 2008.04.20

Abstract

The formation of complex $XeHCl^+$ in the collision-induced reaction of $Xe^+$ with HCl has been studied by use of classical dynamics procedures using the London-Eyring-Polanyi-Sato empirical potential energy surfaces. A small fraction of trajectories on the $Xe^+$ + HCl and Xe + $HCl^+$ surfaces lead to the formation of complex $XeHCl^+$ with life-times of 1-2 ps which is long enough to survive many rotations before redissociating back to the reactant state. The formation of complex $XeHCl^+$ occurs mainly from collision angle of $\Theta$ = ${45^{\circ}}$.

Keywords

References

  1. Akin, F. A.; Ree, J.; Ervin, K. M.; Shin, H. K. J. Chem. Phys. 2005, 123, 064308 https://doi.org/10.1063/1.1989321
  2. Ree, J.; Kim, Y. H.; Shin, H. K. J. Chem. Phys. 2006, 124, 074307 https://doi.org/10.1063/1.2171969
  3. Moore, C. E. Ionization Potentials and Ionization Limits Derived from the Analysis of Optical Spectra; Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 34: U. S. GPO, Washington, DC., 1970
  4. Rogers, S. A.; Brazier, C. R.; Bernath, P. F. J. Chem. Phys. 1987, 87, 159 https://doi.org/10.1063/1.453611
  5. CRC Handbook of Physics and Chemistry, 64th ed.; Weast, R. C., Ed.; CRC Press: Boca Raton, FL, 1983; p. E-61 and E-63
  6. Schroder, D.; Harvey, J. N.; Aschi, M.; Schwarz, H. J. Chem. Phys. 1998, 108, 8446 https://doi.org/10.1063/1.476272
  7. Klein, R.; Rosmus, P. Z. Naturforsch. Teil A 1984, 39, 349
  8. Peterson, K. A.; Petrmichl, R. H.; McClain, R. L.; Woods, R. C. J. Chem. Phys. 1991, 95, 2352 https://doi.org/10.1063/1.460941
  9. Huber, K. P.; Herzberg, G. Constants of Diatomic Molecules; Van Nostrand Reinhold: New York, 1979; p 240 and 284
  10. Tonkyn, R. G.; Wiedmann, R. T.; White, M. G. J. Chem. Phys. 1992, 96, 3696 https://doi.org/10.1063/1.461923
  11. Ree, J.; Kim, Y. H.; Shin, H. K. J. Chem. Phys. 2007, 127, 054304 https://doi.org/10.1063/1.2751499
  12. Lee, S.; Ree, J.; Kim, Y. H.; Shin, H. K. Bull. Korean Chem. Soc. 2005, 26, 1369 https://doi.org/10.5012/bkcs.2005.26.9.1369
  13. Glasstone, S.; Laidler, K. J.; Eyring, H. The Theory of Rate Processes; McGraw-Hill: New York, 1941
  14. Sato, S. J. Chem. Phys. 1955, 23, 592, 2465 https://doi.org/10.1063/1.1742043
  15. Ree, J.; Kim, Y. H.; Shin, H. K. Bull. Korean Chem. Soc. 2007, 28, 635 https://doi.org/10.5012/bkcs.2007.28.4.635
  16. Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids; John Wiley: New York, 1967
  17. Doverspike, L. D.; Champion, R. L.; Bailey, T. L. J. Chem. Phys. 1966, 45, 4385 https://doi.org/10.1063/1.1727517
  18. Fink, R. D.; King, J. S. Jr. J. Chem. Phys. 1967, 47, 1857 https://doi.org/10.1063/1.1712182
  19. Kuntz, P. J.; Roach, A. C. J. Chem. Soc., Faraday Trans. II 1972, 68, 259 https://doi.org/10.1039/f29726800259