DOI QR코드

DOI QR Code

Uplift Capacity for Bond Type Anchored Foundations in Rock Masses

부착형 암반앵커기초의 인발지지력 평가

  • 김대홍 (한국전력공사 전력연구원) ;
  • 이용희 (한국전력공사 전력연구원)
  • Published : 2008.10.31

Abstract

This paper presents the results of full-scale loading tests performed on 54 passive anchors and 4 group anchored footings grouted to various lengths at several sites in Korea. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, properties of the discontinuities, and the strength of rebar. Anchors in poor quality rocks generally fail along the grout/rock interfaces when their depths are very shallow (a fixed length of less than 1 m). However, even in such poor rocks, we can induce a more favorable mode of rock pull-up failure by increasing the fixed length of the anchors. On the other hand, anchors in good quality rocks show rock pull-up failures with high uplift resistance even when they are embedded at a shallow depth. Laboratory test results revealed that a form of progressive failure usually occurs starting near the upper surface of the grout, and then progresses downward. The ultimate tendon-grout bond strength was measured from $18{\sim}25%$ of unconfined compressive strength of grout. One of the important findings from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for a transmission tower foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

본 논문에서는 국내 몇몇 시험현장에서 수행한 총 54회 단일앵커시험과 4회 실규모 앵커기초에 대한 결과를 제시하였다. 시험결과, 암반앵커의 인발에 대한 파괴메커니즘은 암종 및 암질, 근입깊이, 불연속면의 특성, 텐던의 강도 등에 영향을 받는 것으로 나타났다. 불량한 암반내 얕은 앵커의 경우(정착심도 1.0m 이하) 대부분 그라우트-암반 부착파괴로 나타났으나 이러한 경우에도 깊이를 증가시키면 암반파괴를 유도할 수 있다. 반면에, 얕은 앵커기초라 하더라도 암반상태가 좋으면 부착파괴가 아닌 암반파괴의 형태를 보인다. 한편 실내부착강도 시험결과는 표면부터 진행성파괴가 나타나며 점차 아래로 전파된다. 이때 측정된 텐던-그라우트 부착강도는 그라우트 일축압축강도의 약 $18{\sim}25%$로 나타났으며, 방식 쉬이스로 인한 부착강도의 감소는 보이지 않았다. 연구결과로부터 암반앵커시스템의 인발지지력을 지배하는 주요 파라메터를 결정하고 적용 암반의 분류기준을 제시하였으며, 최종적으로 인발에 대한 암반앵커기초의 지지력을 평가할 수 있는 간편화된 절차를 제안하였다.

Keywords

References

  1. 김대홍, 이대수, 천병식, 김병홍 (2006), '암반에 근입된 부착형 앵커의 거동특성 (I) - 태안지역 편마암', 한국지반공학회 논문집, 제22권 제12호, pp.45-55
  2. 김대홍, 김경열 (2008), '암반에 근입된 부착형 앵커의 거동특성 (II) - 창녕 및 옥천지역 (셰일 및 석회암)', 한국지반공학회 논문집, submitted
  3. British Standards Institution (1989), British Standard Code of Practice for Ground Anchorages, BS8081, London, England, pp.115-125
  4. Hobst, L. and Zajic, J. (1977), Anchoring in Rock, Development in Geotechnical Engineering, Vol.13, Elsevier Scient. Publ., Amsterdam, pp.25-50
  5. Ismael, N. F. (1982), 'Design of Shallow Rock-anchored Foundations', Canadian Geotechnical Journal, Vol.19, No.2, pp.469-471
  6. Ismael, N. F., Radhakrishna, H. S. and Klym, T. W. (1980), 'Uplift Capacity of Anchors in Transmission Tower Design', IEEE Transactions on Power Apparatus and System, Vol.PAS-98, No.5, pp.1653-1658
  7. Kim, D. H. and Lee, S. R. (2005), 'Uplift Capacity of Fixed Shallow Anchors subjected to Vertical Loading in Rock', International Journal of Offshore and Polar Engineering, Vol.15, No.4, pp. 312-320
  8. Littlejohn, G. S. and Bruce, D. A. (1977), 'Rock Anchors-Design and Quality Control', Proc. 16th Symp. on Rock Mechanics, University of Minnesota, pp.77-88
  9. Nicholson, P. J., Uranowski, D. D. and Wycliffe-Jones, P. T. (1982), Permanent Ground Anchors-Nicholson Design Criteria, Fed. Highwy. Adm. Office of Research and Development, U.S. Dept. Transp., Report No. FHWA/RD-81/151, Washington, D.C., pp.1-25
  10. Saliman, R. and Schaefer, R. (1968), 'Anchored Footings for Transmission Towers', ASCE Annual Meeting and National Meeting on Structural Engineering, Pittsburge, PA, Sept. 3-Oct. 4, Preprint 753, pp.15-38
  11. U. S. Army Corps of Engineers (1994), Engineering and Design Rock Foundations, EM 1110-1-2908, Nov. 30, pp.69-73