Influence of Membrane Material and Structure on Fouling of a Submerged Membrane Bioreactor

침지형 막 분리 활성슬러지법에서 막의 재질 및 구조가 파울링에 미치는 영향

  • Choi, Jae-Hoon (Environmental Business Team, Samsung Engineering Co., Ltd.) ;
  • Kim, Hyung-Soo (Department of Civil and Environmental Engineering, SungKyunKwan University)
  • 최재훈 ((주)삼성엔지니어링) ;
  • 김형수 (성균관대학교 사회환경시스템공학과)
  • Published : 2008.01.31

Abstract

This work was performed to evaluate the effect of membrane material and structure on fouling in a submerged membrane bioreactor(MBR). Three types of microfiltration membranes with the same pore size of 0.1 $\mu$m but different materials, polytetrafluoroethylene (PTFE), polycarbonate(PCTE) and polyester(PETE), were used. While PETE membrane exhibited the most rapid flux decline throughout the operation, PCTE and PTFE had a similar tendency with regard to permeability. Difference in permeability between PETE and the other membranes gradually decreased with time, which was probably due to chemical cleaning. The higher TOC rejection of PETE membrane could be attributable to its faster fouling, resulting from a larger amount of foulants to get attached to the membrane in a shorter time. DOC fractionation using a DAX-8 resin showed that the composition of each fraction between the supernatant and permeates did not change significantly with operation time, indicating that membrane hydrophilicity/hydrophobicity was not a dominant factor affecting to MBR fouling in this study. Compared to other membranes, the fouling of PETE membrane was more influenced by pore clogging (irreversible fouling), which would probably contribute to a higher organic rejection of the PETE membrane.

본 연구는 도시하수 처리를 위한 침지형 막 분리 활성슬러지법(membrane bioreactor: MBR) 시스템에서 막 재질 및 구조가 파울링에 미치는 영향을 조사하기 위하여, polytetrafluoroethylene(PTFE), polycarbonate(PCTE) 및 polyester(PETE)의 정밀여과 막(기공크기: 0.1 $\mu$m)을 사용하였다. 120일의 운전기간 동안 PETE막 여과속도는 다른 막들에 비해 가장 빠른 감소경향을 보였으나, 화학세정을 할수록 점차 PCTE 및 PTFE막과 유사한 여과속도 감소경향을 보였다. PETE막의 유기물 제거율이 다른 막들에 비해 약간 높게 나타났으며, 이것은 막의 빠른 파울링 발생과 밀접한 관련이 있는 것으로 판단된다. 반응조내 슬러지 상징액 및 막 여과수에 존재하는 DOC성분을 친수성 및 소수성으로 분획한 결과, 본 연구에서는 막의 친수성/소수성이 MBR 파울링에 미치는 영향이 크지 않은 것으로 나타났다. 파울링이 발생한 막들의 각종 여과저항 값을 분석한 결과, PETE막은 비가역적 파울링에 의한 영향이 다른 막들에 비하여 컸으며, 유기물 제거율에도 긍정적인 영향을 미친 것으로 판단된다.

Keywords

References

  1. Visvanathan, C., Ben Aim, R., and Parameshwaran, K., "Membrane separation bioreactors for wastewater treatment," Crit. Rev. Env. Sci. Tec., 30(1), 1-48(2000) https://doi.org/10.1080/10643380091184165
  2. Le-Clech, P., Chen, V., and Fane, T. A. G., "Fouling in membrane bioreactors used in wastewater treatment," J. Memb. Sci., 284(1-2), 17-53(2006) https://doi.org/10.1016/j.memsci.2006.08.019
  3. Nagaoka, H., Ueda, S., and Miya, A., "Influence of bacterial extracellular polymers on the membrane separation activated sludge process," Water Sci. Technol., 34(9), 165-172(1996)
  4. Piao, J., Fukushi, K., and Yamamoto, K., "Bacterial community structure on membrane surface and characteristics of strains isolated from membrane surface in submerged membrane bioreactor," Sep. Sci. Technol., 41(7), 1527-1549(2006)
  5. Yamato, N., Kimura, K., Miyoshi, T., and Watanabe, Y., "Difference in membrane fouling in membrane bioreactors( MBRs) caused by membrane polymer materials," J. Memb. Sci., 280(1-2), 911-919(2006) https://doi.org/10.1016/j.memsci.2006.03.009
  6. APHA, Standard Methods for the Examination of Water and Wastewater, 19th ed., American Public Health Association, New York(1995)
  7. JSWA, Japanese Standard Methods of the Examination of Wastewater, Japan Sewage Works Association, Tokyo(1997)
  8. Al-Amoudi, A., Williams, P., Mandale, S., and Lovitt, R. W., "Cleaning results of new and fouled nanofiltration membrane characterized by zeta potential and permeability," Sep. Purif. Tech., 54(2), 234-240 (2007) https://doi.org/10.1016/j.seppur.2006.09.014
  9. Elmaleh, S. and Abdelmoumni, L., "Cross-flow filtration of an anaerobic methanogenic suspension," J. Memb. Sci., 131(1-2), 261-274(1997) https://doi.org/10.1016/S0376-7388(97)00049-5
  10. Li, X. Y. and Chu, H. P., "Membrane bioreactor for the drinking water treatment of polluted surface water supplies," Water Res., 37(19), 4781-4791(2003) https://doi.org/10.1016/S0043-1354(03)00424-X
  11. Quanrud, D. M., Hafer, J., Karpiscak, M. M., Zhang, J., Lansey, K. E., and Arnold, R. G., "Fate of organics during soil-aquifer treatment: sustainability of removals in the field", Water Res., 37(14), 3401-3411(2003) https://doi.org/10.1016/S0043-1354(02)00489-X
  12. He, Y., Xu, P., Li, C., and Zhang, B., "High-concentration food wastewater treatment by an anaerobic membrane bioreactor," Water Res., 39(17), 4110-4118(2005) https://doi.org/10.1016/j.watres.2005.07.030
  13. Nakamura, K. and Matsumoto, K., "Properties of protein adsorption onto pore surface during microfiltration: effects of solution environment and membrane hydrophobicity," J. Memb. Sci., 280(1-2), 363-374(2006) https://doi.org/10.1016/j.memsci.2006.01.039
  14. Elimelech, M., Zhu, X., Childress, A. E., and Hong, S., "Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes," J. Memb. Sci., 127(1), 101-109(1997) https://doi.org/10.1016/S0376-7388(96)00351-1
  15. Vrijenhoek, E. M., Hong, S., and Elimelech, M., "Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes," J. Memb. Sci., 188(1), 115-128(2001) https://doi.org/10.1016/S0376-7388(01)00376-3