Biodeodorization of Trimethylamine by Biofilter Packed with Waste Tire-Chips

폐타이어칩 충진형 바이오 필터에 의한 Trimethylamine 제거

  • Park, Hun-Ju (Department of Environmental Engineering, Inha University) ;
  • Kim, Chang-Gyun (Department of Environmental Engineering, Inha University)
  • 박헌주 (인하대학교 환경공학과) ;
  • 김창균 (인하대학교 환경공학과)
  • Published : 2008.08.31

Abstract

This study was conducted to investigate removal characteristics of gaseous trimethylamine(TMA) through biofilter packed with waste tire-chips. The sludge in this experiment was collected from an activated sludge operated in a wastewater treatment facility treating malodorous pollutants. The nominal amount of collected sludge was inoculated through packing materials in the filter. The removal efficiencies for varying concentrations and SVs(Space velocity) were assessed based on TMA, COD$_{Cr}$, NO$_3{^-}$-N, NO$_2{^-}$-N, NH$_4{^+}$-N and EPS(Extracellular Polymeric Substances) in leachate, since biofilter had been steady-stately operated. The influent concentration of 10 ppm of TMA was removed to approximately 95% regardless of changing SV at 120 and 180 hr$^{-1}$, but it was lowered to 80 to 90% at SV 240 hr$^{-1}$. As influent concentration was gradually increased from 5 to 55 ppm, the removal efficiencies of TMA were initially high for 95% in the range of 5 to 10 ppm, but lowered to 80% for 10 to 30 ppm. As a part of kinetic study for TMA decomposition, V$_m$(maximum substrate removal rate) and $K_s$(substrate infinity coefficient) were 14.3 g$\cdot$m$^{-3}$$\cdot$h$^{-1}$ and 0.043 g$\cdot$m$^{-3}$, respectively while adapted period was shown in the range of 100 to 150 hr. Also, the EPS concentration was consistently observed from the leachate showing 100 to 200 ppm, which indicates that biofilm has been continuously formed and sustained throughout tire-chips packed reactor.

본 연구에서는 파쇄된 타이어칩을 담체로 충진한 biofilter를 이용하여 악취의 원인 물질인 trimethylamine(TMA)의 제거특성을 실험하였다. 실험에서 사용된 미생물은 S 수탁폐수 처리업체에서 채취한 활성슬러지를 순응 배양 하였으며, peristatic pump를 이용하여 20일간 바이오필터의 담체에 순환시키면서 접종 하였다. Biofilter의 안정화를 확인한 후 유입 농도와 공간속도를 변화시켜 처리효율을 측정하였으며, 침출수중의 액상 TMA, COD$_{Cr}$, NO$_3{^-}$-N, NO$_2{^-}$-N, NH$_4{^+}$-N, EPS(Extracellular Polymeric Substances)를 측정하여 생물학적인 영향과 처리효율에 대해 평가하였다. TMA의 유입농도를 약 10 ppm의 범위로 고정하고 SV(space velocity)를 120 hr$^{-1}$에서 240 hr$^{-1}$까지 증가시켜 TMA의 제거효율을 검토한 결과 120, 180 hr$^{-1}$에서는 95% 이상, SV 240 hr$^{-1}$에서는 최대 90%, 최소 80%의 제거효율을 얻어 최적 제거 공간 속도는 180 hr$^{-1}$임을 확인 할 수 있었다. 또한, SV를 180 hr$^{-1}$, 유입농도를 5$\sim$55 ppm까지 단계적으로 증가시켜 TMA의 제거효율을 검토한 결과 유입농도 10 ppm까지는 95%, 유입농도 10$\sim$30 ppm에서는 80%의 제거율을 보임을 알 수 있었고, 유입농도 40 ppm 이상에서는 제거효율이 급격히 감소하는 경향을 보여 TMA에 대한 임계 최대 제거 농도는 40 ppm임을 확인 할 수 있었다. Kinetic analysis를 통해 얻은 TMA의 최대 제거 속도($V_m$)와 기질친화상수($K_s$)는 각각 14.3 g$\cdot$m$^{-3}$$\cdot$h$^{-1}$과 0.043 g$\cdot$m$^{-3}$로 나타났으며, 충격부하에 대한 미생물의 순응 기간은 100$\sim$150 hr 정도로 나타났다. 또한, 침출수중의 EPS 농도가 100$\sim$200 ppm의 범위에서 지속적으로 측정되어 반응기내에서 생물막이 지속적으로 생성되어짐을 확인 할 수 있었다.

Keywords

References

  1. Adams, B., 'Dioxin emissions from a MSWI related to memory effects in a 2-stage wet scrubber,' Atmospheric levels of PCDD/PCDF during the Test Phase of a municipal solid waste incinerator in Portugal, Monterey, Federal Environmental Agency, 178-181(2000)
  2. Everaert, K. and Baeyens J., 'Catalytic combustion of volatile organic compounds,' J. Harzard. Mater., 109(1-3), 113-139(2004) https://doi.org/10.1016/j.jhazmat.2004.03.019
  3. Debasish, D., Vivekanand G., and Nishith, V., 'Removal of volatile organic compound by activated carbon fiber,' Carbon, 42(14), 2949-2962(2004) https://doi.org/10.1016/j.carbon.2004.07.008
  4. Devinny, J. S., Deshusses, M. A., and Webster, T. S., 'Biofilteration For Air Pollution Control,' Lewis Publishers, New York, 5-50(1999)
  5. Leson, G. and Winer, A. M., 'Biofiltration: an innovative air pollution control technology for VOC emissions,' J. Air Waste Manage. Assoc., 41(8), 1045-1054(1991) https://doi.org/10.1080/10473289.1991.10466898
  6. Kennes, C. and Thalasso, F., 'Waste gas biotreatment technology,' J. Chem. Biotechnol., 72(4), 303-319(1998) https://doi.org/10.1002/(SICI)1097-4660(199808)72:4<303::AID-JCTB903>3.0.CO;2-Y
  7. Kim, S. G., Bae, H. S., and Lee, S. T., 'A novel denitrifying bacterial isolate that degrades trimethylamine both aerobically and anaerobically via two different pathways,' Arch. Microbiol., 176(4), 271-277(2001) https://doi.org/10.1007/s002030100319
  8. Park D., Lee D. S., Joung J. Y., and Park J. M., 'Comparison of different bioreactor systems for indirect $H_2S$ removal using iron-oxidizing bacteria,' Process Biochem., 40(3-4), 1461-1467(2005) https://doi.org/10.1016/j.procbio.2004.06.034
  9. Burgess, J. E., Parsons, S. A., and Stuetz, R. M., 'Development in odour control and waste gas treatment biotechnology: a review,' Biotechnol Adv., 19(1), 35-63 (2001) https://doi.org/10.1016/S0734-9750(00)00058-6
  10. Elias, A., Barona, A., Arreguy, A., Rios, J., Aranguiz, I., and Penas, J., 'Evaluation of a packing material for the biodegradation of $H_2S$ and product analysis,' Process Biochem., 37(8), 813-820(2002) https://doi.org/10.1016/S0032-9592(01)00287-4
  11. Kennes, C. and Veiga, M. C., Bioreactors for Waste Gas Treatment, Kluwer Academic Publisher, Dordrecht/Boston/London, 47-162(2001)
  12. Ha, T. W. and Choi, S. J., 'Biofilter technology for odor and VOCs elimination,' J. Environ. Sci., 14(1), 14-23 (2000)
  13. Coccia, S. P. and Saimona, M., 'Liver DNA alkylation after a single carcinogenic dose of dimethylnitrosamine to newborn and adult CFW Swiss mice,' Chemical and Biological Interactions, 68(3-4), 259-271(1988) https://doi.org/10.1016/0009-2797(88)90020-8
  14. Sandberg, M. and Ahring, B. K. 'Anaerobic treatment of fish meal process waste-water in a UASB reactor at high pH,' Appl. Microbiol. Biotechnol., 36(6), 800-804 (1992)
  15. Leson, G. and Winer, A. M., 'Biofiltration: an innovative air pollution control technology for VOC emissions,' J. Air Waste Manage. Assoc., 41(8), 1045-1054(1991) https://doi.org/10.1080/10473289.1991.10466898
  16. Cao, N. J. and Du, J. X., 'Production of fumaric acid by immobilized Rhizopus using rotary biofilm contactor,' Appl. Biochem. Biotechnol., 63, 387-394(1997) https://doi.org/10.1007/BF02920440
  17. Colby, J. and Zatman, L. J., 'Trimethylamine metabolism in obligate facultative methylotrophs,' Biochem. J., 132(1), 101-112(1973) https://doi.org/10.1042/bj1320101
  18. Lobo, N., Rebelo, A., Partidario, P. J., and Roseiro, J. C., 'A bubble column continuous fermentation system for trimethylamine conversion by Aminobacter aminovorans,' Enzyme Microb. Technol., 21(3), 191-195(1997) https://doi.org/10.1016/S0141-0229(96)00265-7
  19. Anthony, C., 'The biochemistry of methylotrophic microorganisms,' Sci. Prog. Oxf., 62(246), 167-206(1975)
  20. Delhomenie, M. C., Bibeau, L., Bredin, N., and Roy, S., Broussau, S., Brzezinski, R., Kugelmass, J. K., and Heitz, M., 'Biofilteration of air contaminated with toluene on a compost-based bed,' Adv, Environ. Res., 6(3), 239-254(2004) https://doi.org/10.1016/S1093-0191(01)00055-7
  21. 김성건, 이성택, '분변토 biofilter를 이용한 trimethylamine의 제거,' 폐기물 자원화, 4(2), 71-75(1996)
  22. Murray, C. K. and Gibson, D. M., 'An investigation of the method of determining trimethylamine in muscle extracts by the formation of its picrate salt-part,' Food Technol., 7(1), 35-46(1972)
  23. Lowery, O. H., Roserbrough, N. J., Farr, A. L., and Randall, R. J., 'Protein measurement with folin-phenol regent,' J. Biol. Chem., 193(2), 265-275(1951)
  24. Michel D., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Fered, S., 'Colorimetric method for determination of sugars and related substances,' Anal. Chem., 28(3) 350-356(1956) https://doi.org/10.1021/ac60111a017
  25. Park, J. S. and Kim, H. G., 'Bioassays on marine organisms III. Acute toxicity test of mercury, coper cadmium and to Yellowtail, Seriola quinqueradianta and Rock bream, Oplegnathus fasciatus,' Bull. Korean. Fish. Soc., 12(2), 119-123(1979)
  26. Martin, G. T. and Loehr, R. C., 'Effect of periods of non-use on biofilter performance,' J. Air Waste Manage. Assoc., 46(6), 539-546(1996) https://doi.org/10.1080/10473289.1996.10467489
  27. Turk, O. and Mavinic, D. S. 'Stability of nitrite buildup in an activated sludge system,' J. Water Pollut. Control Fed., 61(8), 1440-1448(1989)
  28. BiofilmsONLINE.com(an initiative of Montana of State University․Center for Biofilm Engineering), http://www.biofilmsonline.com(2007)
  29. Zilli, M., Daffonchio, D., Felice, R. D., Gordani, M., and Converti, A., 'Treatment of benzene-contaminated airstreams in laboratoryscale biofilters packed with raw and sieved sugarcane with peat,' Biodegradation, 15(2), 87-96(2004) https://doi.org/10.1023/B:BIOD.0000015613.91044.a4
  30. Zilli, M., Guarino, C., Daffonchio, D., Borin, D., and Converti, A., 'Laboratory scale experiments with a powdered compost biofilter treating benzene polluted air,' Process Biochem., 40(6), 2035-2045(2005) https://doi.org/10.1016/j.procbio.2004.07.018
  31. Park, J. K. and Jhung. J. K., 'Removal of volatile organic compounds emitted during wastewater treatment by ground tires,' Annual Conference & Exposition-WEF, 66(10), 389-398(1993)
  32. Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S., and Srinath, E. G., 'Inhibition of nitrification by ammonia and nitrous acid,' J. Water Pollut. Control Fed., 48(5), 835-852(1976)