• Title/Summary/Keyword: Biodeodorization

Search Result 2, Processing Time 0.017 seconds

Biodeodorization of Trimethylamine by Earthworm Cast Bioflter (분변토 Biofilter를 이용한 Trimethylamine의 제거)

  • Kim, Song-Gun;Lee, Sung-Taik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.71-75
    • /
    • 1996
  • A bacterium, capable of the degradation of trimethylamine(TMA), dimethylamine, and methylamine, was isolated from an enrichment culture on TMA basal mineral medium. The isolate was identified as Methylobacterium some carbon-carbon bonds compounds like malate, succinate, betaine. When the strain was immobilized to earthworm cast, the biofilter could remove the gaseous TMA of SV $30h^{-1}$, concentration of 120ppm, continuously.

  • PDF

Biodeodorization of Trimethylamine by Biofilter Packed with Waste Tire-Chips (폐타이어칩 충진형 바이오 필터에 의한 Trimethylamine 제거)

  • Park, Hun-Ju;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.789-797
    • /
    • 2008
  • This study was conducted to investigate removal characteristics of gaseous trimethylamine(TMA) through biofilter packed with waste tire-chips. The sludge in this experiment was collected from an activated sludge operated in a wastewater treatment facility treating malodorous pollutants. The nominal amount of collected sludge was inoculated through packing materials in the filter. The removal efficiencies for varying concentrations and SVs(Space velocity) were assessed based on TMA, COD$_{Cr}$, NO$_3{^-}$-N, NO$_2{^-}$-N, NH$_4{^+}$-N and EPS(Extracellular Polymeric Substances) in leachate, since biofilter had been steady-stately operated. The influent concentration of 10 ppm of TMA was removed to approximately 95% regardless of changing SV at 120 and 180 hr$^{-1}$, but it was lowered to 80 to 90% at SV 240 hr$^{-1}$. As influent concentration was gradually increased from 5 to 55 ppm, the removal efficiencies of TMA were initially high for 95% in the range of 5 to 10 ppm, but lowered to 80% for 10 to 30 ppm. As a part of kinetic study for TMA decomposition, V$_m$(maximum substrate removal rate) and $K_s$(substrate infinity coefficient) were 14.3 g$\cdot$m$^{-3}$$\cdot$h$^{-1}$ and 0.043 g$\cdot$m$^{-3}$, respectively while adapted period was shown in the range of 100 to 150 hr. Also, the EPS concentration was consistently observed from the leachate showing 100 to 200 ppm, which indicates that biofilm has been continuously formed and sustained throughout tire-chips packed reactor.