Agrobacterium-mediated Transformation of PAT into Platycodon grandiflorum A. De. candolle

Agrobacterium을 이용한 Phosphinothricin Acetyl Transferase의 도라지로의 형질전환

  • Park, Jae-Seong (Chungbuk Agricultural Research & Extension Service) ;
  • Kim, Ik-Hwan (Chungbuk Agricultural Research & Extension Service) ;
  • Hong, Eui-Yon (Chungbuk Agricultural Research & Extension Service) ;
  • Yun, Tae (Chungbuk Agricultural Research & Extension Service) ;
  • Lee, Cheol-Hee (Chungbuk Agricultural Research & Extension Service) ;
  • Jeong, Jae-Hun (Dept. of Medicinal Resources & Horticulture Development, Namdo Provincial College) ;
  • Yang, Deok-Chun (College of Life Sciences, Kyunghee University) ;
  • Yun, Jong-Sun (Chungbuk Agricultural Research & Extension Service)
  • Published : 2007.08.30

Abstract

This study was conducted to introduce phosphinothricin acetyl transferase (PAT) gene, resistant to basta which was non-selective herbicide, into balloon flower (Platycodon grandiflorum A. De. candolle). Seeds were germinated on MS medium, and 10-day-old immature cotyledon explants and 30-day-old leaf explants were cocultured with Agrobacterium tumefaciens strain MP 90 (pBinSyn) on 1/10 MS medium for 48 hours in the dark at $25^{\circ}C$. The cultures were transferred for selection of kanamycin-resistant shoots to the MS medium supplemented with 0.2 $mg/{\ell}$ NAA, 1.0 $mg/{\ell}$ BA, 3% sucrose, 100 $mg/{\ell}$ kanamycin, 500 $mg/{\ell}$ carbenicillin. Shoots were obtained from 10-day-old immature cotyledon explants after 4 weeks of culture. The shoots were subcultured twice every 4 weeks on the same medium for growth of transgenic shoots. Successful transformation was confirmed by histochemical GUS assay, PCR analysis, RT-PCR analysis, 10 $mg/{\ell}$ phosphinothricin treatment and 0.3% basta spray. The basta-resistant transgenic plants flowered normally.

본 연구는 Agrobacterium을 매개로 도라지에 PAT 유전자를 도입하여 ‘바스타’에 저항성을 가지는 형질전환 도라지를 개발하는 기술을 확립하기 위하여 수행되었다. 종자를 무균적으로 발아시킨 후 10일 된 미성숙 자엽과 성숙엽에 Agrobac-terium을 접종하고 1/10 MS 배지에서 48시간 동안 공동 배양하였다. 공동배양 후 부정아 유도를 위해 MS 선발배지 (0.2 $mg/{\ell}$ NAA, 1.0 $mg/{\ell}$ BA, 3% 설탕, pH 5.8; 3 $g/{\ell}$ gelrite, 100 $mg/{\ell}$ kanamycin, 500 $mg/{\ell}$ carbenicillin)에 치상하여 배양한 결과 미성숙 자엽의 절편에서 형질전환체로 추정되는 부정아가 형성되었고, 선발배지에 2회 계대배양하여 형질전환 추정체를 선발하였다. 이러한 형질전환 추정체는 GUS, PCR 분석 및 RT-PCR 분석에 의하여 형질전환체로 확인되었다. 또한 10 $mg/{\ell}$ 의 phosphinothricin이 함유된 배지에서 배양하여 형질전환 여부를 확인하였고, 순화재배 후 0.3% ‘바스타’를 살포한 결과 형질전환 도라지는 제초제에 저항성을 보였다. ‘바스타’에 저항성을 보인 도라지 식물체는 정상적인 생육을 계속하여 개화하였다.

Keywords

References

  1. Belarmino MM, Mii M (2000) Agrobacterium-mediated genetic transformation of a phalaenopsis orchid. Plant Cell Rep. 19:435-442
  2. Cho JH, Kim YW (2004) Molecular and cytogenetic analysis of transgenic plants of rice (Oryza sativa L.) produced by Agrobacterium-mediated transformation. Kor. J. Plant Res. 7(1):39-46
  3. Ha YM, Kim JC, Lee SW, Lee SW, Kim ZH (2003) Expression and inheritance of bar gene in Petunia hybrida transformed with Agrobacterium. Kor. J. Plant Biotech. 30(2):143-149 https://doi.org/10.5010/JPB.2003.30.2.143
  4. Hoshino Y, Zhu YM, Nakano M, Takahashi E, Mii M (1998) Production of transgenic grapevine (Vitis vinifera L.) plants by co-cultivation of embryogenic calli with Agrobacterium tumefaciens and selecting secondary embryos. Plant Biotechnology 15(1):29-33
  5. Jefferson RA (1987) Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mole. Biol. Rep. 5(4):387-405. Cambridge, England
  6. Kang JH, Shim YD, Jeon BS (2002) Seed treatment procedure to promote seedling emergence of Platycodon grandiflorum. Kor. J. Med. Crop Sci. 10(2):75-81
  7. Kim KS, Hwang SJ, Pyo BS, Kim SM (2005) Adventitious bud induction and plant regeneration from cotyledon explants of Camellia japonica L. Korean J. Medicinal Crop Sci. 13(3):105-108
  8. Kim YJ, Park TL, Kim HS, Park HG, Chon SU, Yun SJ (2004) Factors affecting somatic embryogenesis from immature cotyledon of soybean. J. Plant Biotech. 6(1):45-50
  9. Komatsuda T, Ohyama K (1988) Genotypes of high competence for somatic embryogenesis and plant regeneration in soybean Glycine max. Theor. Appl. Genet. 75:695-700
  10. Kondo T, Shomura T, Ogawa Y, Watanabe H, Totsukawa K, Suzuki T, Moriyama C, Toshida J, Inouye S (1973) Studies on a new antibiotic SF-1293. Isolation and physico-chemical and biological characterization of SF-1293 substance. Sci. Rep. Meiji Seika Kaisha 13:34-41
  11. Lim JD, Yu CY, Kim MJ, Yun SJ, Lee SJ, Kim NY, Chung LM (2004) Comparison of SOD activity and phenolic compound contents in various Korean medicinal plants. Kor. J. Med. Crop Sci. 12(3):191-202
  12. Saeki T, Koike K, Nikaido T (1999) A comparative study on commercial, botanical gardens and wild samples of the roots of Platycodon grandiflorum by HPLC analysis. Planta Medica 65:428-431 https://doi.org/10.1055/s-1999-14021
  13. Seong JD, Kim GS, Kim HT, Park CB, Kim SM (2004) Effect of split application of nitrogen fertilizer on growth and yield in Platycodon grandiflorum A. DC. Kor. J. Med. Crop Sci. 12(6):437-441
  14. Tachibana K, Watanabe T, Sekizawa T, Takemutsu T (1986) Action mechanism of bialaphos. Accumulation of ammonia in plants treated with bialaphos. J. Pest. Sci. 11:33-37 https://doi.org/10.1584/jpestics.11.33
  15. Tsukazaki H, Kuginuki Y, Aida R, Suzuki T (2002) Agrobacterium-mediated transformation of a doubled haploid line of cabbage. Plant Cell Rep. 21:257-262
  16. White J, Chang SY, Bivv MJ (1990) A cassette containing the bar gene of Streptomyces hygroscopicus: a selectable marker for plant transformation. Nucleic Acids Res. 18:1062-1065 https://doi.org/10.1093/nar/18.4.1062
  17. Woo JW, Jeong WJ, Choi KS, Park HG, Baek NK, Liu JR (2001) Production of herbicide-resistant transgenic plants from embryogenic suspension cultures of cucumber. Kor. J. Plant Tiss. Cult. 28(1):53-58
  18. Yang KJ (2001) Genetic transformation of Panax ginseng with herbicide resistant gene. Kor. J. Plant Tiss. Cult. 28(6):353-357