DOI QR코드

DOI QR Code

Antiinflammatory and antioxidative effects of Agrimonia pilosa Ledeb

  • Sim, SY (Department of Ophthalmology and Otolaryngology, College of Oriental Medicine, Kyungwon University) ;
  • Kim, GJ (Department of Ophthalmology and Otolaryngology, College of Oriental Medicine, Kyungwon University) ;
  • Ko, SG (Department of Preventive Medicine, College of Oriental Medicine, Kyung Hee University)
  • Published : 2007.09.30

Abstract

Agrimonia pilosa Ledeb. has long been used for a useful natural agent ameliorating inflammation related symptoms in the folk medicine recipe. This study was performed to investigate effects of Agrimonia pilosa Ledeb.(AP) on the expression of inflammation related genes such as the inducible nitric oxide synthase (iNOS) in macrophage cell line, RAW 264.7 cells. The AP (whole plants) was extracted with 80% ethanol and sequentially partitioned with solvents in order to increase polarity. Among the various solvent extracts of AP, the n-butanol (BuOH) fraction showed the most powerful inhibitory ability against nitric oxide (NO) production in lipopolysaccharide (LPS)-induced RAW 264.7 cells without affecting cell viability. Reverse transcriptase-polymerase chain reaction and Western blot analysis revealed that the BuOH fraction provided a primary inhibitor of the iNOS protein and mRNA expression in LPS-induced RAW 264.7 cells. The DPPH and OH radical scavenging activities of the several fractions of 80% ethanol extracts of AP significantly increased by EtOAC and BuOH fractions. Thus, the present study suggests that the response of a component of the BuOH fraction to NO generation via iNOS expression provide an important clue to elucidate anti-inflammatory mechanism of AP.

Keywords

References

  1. Alderton WK, Cooper CE, Knowles RG. (2001) Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593-515 https://doi.org/10.1042/0264-6021:3570593
  2. Allen RG, Tresini M. (2000) Oxidative stress and Gene regulation. Free Radic. Biol. Med. 28, 463-499 https://doi.org/10.1016/S0891-5849(99)00242-7
  3. Bosca L, Zeini M, Traves PG, Hortelano S. (2005) Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology 208, 249-258 https://doi.org/10.1016/j.tox.2004.11.035
  4. Brand-Williams W, Cuvelier ME, Berset C. (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 28,25-30
  5. Bremner P, Heinrich M. (2002) Natural products as targeted modulators of the nuclear factor-kB pathway. J. Pharm. Pharmacol. 54,453-472 https://doi.org/10.1211/0022357021778637
  6. Cals-Grierson MM, Ormerod AD. (2004) Nitric oxide function in the skin. Nitric Oxide 10,179-193 https://doi.org/10.1016/j.niox.2004.04.005
  7. Chen YC, Yang LL, Lee TJ F. (2000) Oroxylin A inhibition of LPS-induced iNOS and COX-2 gene expression via suppression of NF-eB activation. Biochem. Pharmacol. 59,1445-1457 https://doi.org/10.1016/S0006-2952(00)00255-0
  8. Dhar A, Young MR, Colburn NH. (2002) The role of AP-1, NF-kappaB and ROS/RNS in skin carcinogenesis: the JB6 model is predictive. Mol. Cell. Biochem. 234-235,185-193 https://doi.org/10.1023/A:1015948505117
  9. Kurz DJ, Decary S, Hong Y, Trivier E, Akhmedov A, Erusalimsky JD. (2004) Cronic oxidative stress compromise telomere integrity and accelerates the onset of senescence in human endothelial cells. J. Cell. Sci. 117, 2417-2426 https://doi.org/10.1242/jcs.01097
  10. Cuda G, Paterno R, Ceravolo R, Candigliota M, Perrotti N, Perticone F et al. (2002) Protection of human endothelial cells from oxidative stress: role of RAS-ERK1/2 signaling. Circulation 105, 968-1074 https://doi.org/10.1161/hc0802.104324
  11. Berlet BS, Stadtman ER. (1997) Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem. 272, 20313-20316 https://doi.org/10.1074/jbc.272.33.20313
  12. Noroozi M, Angerson WJ, Lean ME. (1998) Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. Am. J. Clin. Nutr. 67,1821-1832
  13. Cho HY, Park JY, Kim JK, Noh KH, Moon GS, Kim JI, Song SY. (2005) Quercetin Ameliorates NO Production via Down-regulation of iNOS Expression, NFkB Activation and Oxidative Stress in LPS-Stimulated Macrophages. Food Sci. Biotechnol. 14, 200-206
  14. Chung SK, Osawa T, Kawakishi S. (1997) Hydroxyl radical scavenging effects of species and scavengers from brown Mustard (Brassica nigra). Biosci. Bbtechnol. Biochem. 61,118-123
  15. Copland A, Nahar L, Tomlinson CT, Hamilton V, Middleton M, Kumarasamy Y, Sarker SD. (2003) Antibacterial and free radical scavenging activity of the seeds of Agrimonia eupatoria. Fitoterapia 74, 133-135 https://doi.org/10.1016/S0367-326X(02)00317-9
  16. Flohe L, Brigelius-Flohe' R, Saliou C, Traber MG, Packer L. (1997) Redox regulation of NF-kB activation. Free Radic. Biol. Med. 22,1115-1126 https://doi.org/10.1016/S0891-5849(96)00501-1
  17. Fort P, Marty L, Piechaczyk M, el Sabrouty S, Dani C, Jeanetur P, Blanchard JM. (1985) Various rat adult tissues express only one major mRNA species from the glyceraldehydes-3-phosphate-dehydrogen multigenic family. Nucleic Acids Res. 13,1431-1442 https://doi.org/10.1093/nar/13.5.1431
  18. Hong CH, Har SK, Oh OJ, Kim SS, Nam KA, Lee SK. (2002) Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells. J. Ethnopharmacol. 83,153-159 https://doi.org/10.1016/S0378-8741(02)00205-2
  19. Ignarro LJ, Byrns RE, Buga GM, Wood KS, Chaudhuri G, (1988) Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and superoxide dismutase to study endothelium-dependent and nitric oxide-elicited vascular smooth muscle relaxation. J. Pharmacol. Exp. Ther. 244,181-189
  20. Isao K, Naosuke B, Yumiko O, Nobusuke K. (1988) Triterpenoids from Agrimonia pilosa. Plrytochemistry 27, 297-299 https://doi.org/10.1016/0031-9422(88)80641-1
  21. Kang BS. (1992) Medical Herbs, pp. 384-386, Young-Rym-Sa, Seoul
  22. Kasai S, Watanabe S, Kawabata J, Tahara S, Mizutani J. (1992) Antimicrobial catechin derivatives of Agrimonia pilosa. Phytochemistry 31, 787-789
  23. Kwon DH, Kwon HY, Kim HJ, Chang EJ, Kim MB, Yoon EY, Yoon DY, Lee YH, ChoilS, Choi YK. (2005) Inhibition of hepatitis B virus by an aqueous extract of Agrimonia eupatoria L. Phytother. Res. 19,355-358 https://doi.org/10.1002/ptr.1689
  24. Lin YL, Lin JK. (1997) (-)-Epicgallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor NF-eB. Mol. Pharmacol. 52, 465-472
  25. Murayama T, Kishi N, Koshiura R, Takagi K, Furukawa T, Miyamoto K. (1992) Agrimoniin, an antitumor tannin of Agrimonia pilosa Ledeb. induces interleukin-1. Anticancer Res. 12,1471-1474
  26. Ormerod AD, Weller R, Copeland P, Benjamin N, Ralston SH, Grabowksi P, Herriot R. (1998) Detection of nitric oxide and nitric oxide synthases in psoriasis. Arch. Dermatol. Res. 290, 3-8 https://doi.org/10.1007/s004030050268
  27. Park EJ, Oh H, Kang TH, Sohn DH, Kim YC. (2004) An isocumarin with hepatoprotective activity in Hep G2 and primary hepatocytes from Agrimonia pilosa. Arch. Pharm. Res. 27, 944-946
  28. Phytochemical Database, 2002, USDA-ARS-NGRL, Beltsville Agricultural Research Center, Beltsville, MD. available: http:/www.ars-grin.gov/duke/
  29. Rahman I, Biswas SK, Kirkham PA. (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem. Pharmacol. doi,10:1016/j.bcp. 2006.07.004 https://doi.org/10.1016/j.bcp.2006.07.004
  30. Raso GM, Meli R, Di Carlo G, Pacilio M, Di Carlo R. (2001) Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 expression by flavonoids in macrophage J774A.1. Life Sci. 68, 921-931 https://doi.org/10.1016/S0024-3205(00)00999-1
  31. Schoonbroodt S, Piette J. (2000) Oxidative stress interference with the nuclear factor-KB activation pathways. Biochem. Pharmacol. 60,1075-1083 https://doi.org/10.1016/S0006-2952(00)00371-3
  32. Setty AR, Sigal LH. (2005) Herbal medications commonly used in the practice of Rheumatology: Mechanism of action, efficacy, and side effects. Semin. Arthritis Rheum. 34, 773-784 https://doi.org/10.1016/j.semarthrit.2005.01.011
  33. Shin KM, Kim IT, Park YM, Ha JH, Choi JW, Park HJ, Lee YS, Lee KT. (2004) Anti-inflammatory effect of caffeic acid methyl ester and its mode of action through the inhibition of prostaglandin E2, nitric oxide and tumor necrosis factor-a production. Biochem. Pharmacol. 68, 2327-2336 https://doi.org/10.1016/j.bcp.2004.08.002
  34. Siebra MX, Santos MA, Almeida TLP, Leite ACRM, Cunha FQ, Rocha FAC (2006) Evidence for the participation of nitric oxide in pemphigus. Braz. J. Med. Biol. Res. 39, 671-675
  35. Singleton VL, Lamuela-Raventos RM. (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Meth. Enzymol. 299,152-178 https://doi.org/10.1016/S0076-6879(99)99017-1
  36. Tsao LT, Tsai PS, Lin RH, Huang LJ, Kuo SC, Wang JP. (2005) Inhibition of lipopolysaccharide-induced expression of nducible nitricoxide synthase by phenolic(3E)^-(2-hydroxyphenyl)but-3-en-2-onein RAW264.7 macophages. Biochem. Pharmacol. 70, 618-626 https://doi.org/10.1016/j.bcp.2005.05.032
  37. Wang HQ, Smart RC. (1999) Overexpression of protein kinase C-alpha in the epidermis of transgenic mice results in striking alterations in phorbol ester-induced inflammation and COX-2, MIP-2 and TNF-alpha expression but not tumor promotion. J. Cell. Sci. 112,3497-3506
  38. Woisky RG, Salatino A. (1998) Analysis of propolis: some parameters and procedures for chemical quality control. J. Apic. Res. 37, 99-105
  39. Xu X, Qi X, Wang W, Chen G. (2005) Separation and determination of flavonoids in Agrimonia pilosa Ledeb. by capillary electrophoresis with electrochemical detection. J. Sep. Sci. 28, 647-652 https://doi.org/10.1002/jssc.200400095