DOI QR코드

DOI QR Code

The Identification and Physiological Properties of Lactobacillus plantarum JK-01 Isolated from Kimchi

김치로부터 분리한 Lactobacillus plantarum JK-01의 동정 및 생리적 특성

  • Cho, Jin-Koo (Gyeonggi-do Regional Research Center and Dept. of Animal Life & Environment Science, Hankyong National University) ;
  • Li, Guan-Hao (Department of Food Science, Agricultural College of Yanbian University) ;
  • Cho, Sung-Jin (Gyeonggi-do Regional Research Center and Dept. of Animal Life & Environment Science, Hankyong National University) ;
  • Yoon, Yoh-Chang (Dept. of Food Science and Biotechnology of Animal Resources, Konkuk University) ;
  • Hwang, Seong-Gu (Gyeonggi-do Regional Research Center and Dept. of Animal Life & Environment Science, Hankyong National University) ;
  • Heo, Kang-Chil (Gyeonggi-do Regional Research Center and Dept. of Animal Life & Environment Science, Hankyong National University) ;
  • Choe, Il-Shin (Gyeonggi-do Regional Research Center and Dept. of Animal Life & Environment Science, Hankyong National University)
  • 조진국 (국립한경대학교 친환경농축산물연구센터(GRRC) 및 동물생명환경과학부) ;
  • 이관호 (중국 연변대학교 농학원 식품과학부) ;
  • 조성진 (국립한경대학교 친환경농축산물연구센터(GRRC) 및 동물생명환경과학부) ;
  • 윤여창 (건국대학교 동물생명과학대학 축산식품생물공학과) ;
  • 황성구 (국립한경대학교 친환경농축산물연구센터(GRRC) 및 동물생명환경과학부) ;
  • 허강칠 (국립한경대학교 친환경농축산물연구센터(GRRC) 및 동물생명환경과학부) ;
  • 최일신 (국립한경대학교 친환경농축산물연구센터(GRRC) 및 동물생명환경과학부)
  • Published : 2007.09.30

Abstract

In order to identify probiotic microorganisms, 25 isolates of Lactobacillus sp. were selected from kimchi based on their growth rates, lactic acid production and salt tolerance. The isolate JK-01 was identified as Lactobacillus plantarum by the API kit and 16S rDNA analysis (99.9% of homology), and named as L. plantarum JK-01. The maximum number of L. plantarum JK-01 was reached at 18 hr fermentation in MRS broth and the pH gradually decreased to 4.5. L. plantarum JK-01 showed high enzyme activities for xylanase, amylase, protease, and phytase on MRS agar plates containing each substrate. L. plantarum JK-01 showed high resistance to acidic pH and bile salts, and grew well even at pH 2.0 and 1.0% bile salt. In particular, L. plantarum JK-01 showed high heat stability as shown by $3.3{\times}10^3$ CFU/mL at $60^{\circ}C$. The isolate showed remarkable antimicrobial activity against E. coli in MRS broth based on its disappearance after 18 hr and clear zone formation using a paper disk assay. These results suggest that L. plantarum JK-01 may be probiotic in nature.

김치의 L. plantarum의 생균제적 특성을 조사하기 위하여 김치에서 산생산과 성장능력 등이 우수한 25종의 Lactobacillus sp.를 분리하였고, API kit 분석에 의하여 L. plantarum을 동정하고 재차 16S rDNA 염기서열(99.9% 상동성)을 비교한 후 L. plantarum JK-01로 표기하였다. L. plantarum JK-01은 MRS broth에서 배양시 18시간 후 $2.9{\times}10^{10}CFU/ml$로 최대로 증식하는 빠른 성장특성을 나타냈으며 pH도 4.5로 조속히 하강하였다. 효소활성은 xylanase, amylase, protease, phytase의 순으로 높은 활성을 포함하고 있는 것으로 예측되었다. L. plantarum JK-01은 pH 2에서도 $1.36{\times}10^5CFU/mL$가 생존하였고, 1%의 담즙산에서도 약 $10^6CFU/mL$이상이 생존하여 내산성과 내담즙산성이 강한 것으로 나타났다. 또, $60^{\circ}C$에서도 $3.3{\times}10^3$ CFU/mL 정도로 생존하는 내열성이 있었으며, 대장균과 함께 배양시 18시간 후 대장균을 사멸시키는 것으로 나타났다. 이상의 결과로부터 분리한 L. plantarum JK-01은 생균제로서 충분히 이용가치가 있는 것으로 사료되었다.

Keywords

References

  1. APHA (1985) Standard methods for the examination of dairy products, 15th ed. American Public Health Association, Washington. DC
  2. Ammor, M. S. and Mayo, B. (2007) Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 76, 138-1462 https://doi.org/10.1016/j.meatsci.2006.10.022
  3. Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378
  4. Fuller, R. and Gibson G. R. (1977) Modification of the intestinal microflora using probiotics and prebiotics. Scand. J. Gastroenterol. 222, 28-31
  5. Eeckhout, W., and M. De Paepe (1994) Total phosphorus, phytate-phosphorous and phytase activity in plant feedstuffs. Anim. Feed. Sci. Tech. 47, 19-25 https://doi.org/10.1016/0377-8401(94)90156-2
  6. Gilliand, S. E. and Speck, M. L. (1997) Deconjugation of bile acids by intestinal lactobacilli. Appl. Environ. Microbiol. 33, 15-18
  7. Havenaar, R., Brink, B. T., and Veld, J. H. (1992) Selection of strains for probiotic use. In: Probiotics. Fuller, R.(ed), Chapman & Hall, New York, pp. 209-224
  8. Hood, S. K. and Zottola, E. A. (1988) Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells. J. Food Sci. 53, 1541-1516
  9. Kim, M. G. and Chun, J. S. (2005) Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103, 91-96 https://doi.org/10.1016/j.ijfoodmicro.2004.11.030
  10. Kimura, K., McCartney A. L., McConell M. A. and Tannock G. W. (1997) Analysis of fecal populations of bifidobacteria and lactobcilli and investigation of the immunological response of their human hosts to the predominant strains. Appl. Environ. Microbiol. 63, 3394-3398
  11. Klaver, F. A. M. and van der Meer, R. (1993). The assumed assimilation of cholesterol by Lactobacillus and Bifidobacterium bifidum is due to their bile salt deconjugation activity. Appl. Environ. Microbiol. 59, 1120-1124
  12. Kobayashi, Y., Tohyaman, K. and Terashima, T. (1974) Studies on biological characteristics of Lactobacillus. II. Tolererance of the multiple antibiotic resistance-strain, L. casei PSR3002, to artificial digestive fluids. Japan J. Microbiol. 29, 691-697
  13. Lee, S. H. and No, M. J. (1997) Viability in artificial gastric and bile juice and antimicrobial activity of some lactic acid bacteria isolated from Kimchi. Kor. J. Appl. Microbiol. Biotechnol. 25, 617-622
  14. Leory, F. Verluyten, J., and Vuyst L. D. (2006) Functional meat cultures for improved sausage fermentation. Int. J. Food Microbiol. 106, 270-285 https://doi.org/10.1016/j.ijfoodmicro.2005.06.027
  15. Loffler, F. E., Sun, Q., Li, J., and Tiedje, J. (2000) 16S rRNA gene-base detection of tetrachoroethene-dechlorinating desulfuromonase and dehaloccoides species. Appl. Enviroron. Microbiol. 66, 1369-1374 https://doi.org/10.1128/AEM.66.4.1369-1374.2000
  16. MacDonald, L. C. Flemming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus plantarum. Appl. Environ. Microbiol., 56, 2120-2124
  17. Oh, C. K., Oh, M. C., Hyon, J. S., Choi, W. J., Lee, S. H., and Kim, S. H. (1997) Depletion of nitrite by lactic acid bacteria isolated from kimchi(l). J. Kor. Soc. Food Sci. Nutr. 26, 549-555
  18. Park, S. Y., Ko, Y. T., Jeong, H. K., Yang, J. O., Chung, H. S., Kim, Y. B., and Ji, G. E. (1996) Effect of various lactic acid bacteria on the serum cholesterol levels in rats and resistance to acid bile and antibiotics. Kor. J. Appl. Microbiol. Biotechnol. 24, 304-310
  19. SAS (1999) SAS/STAT Software for PC. Release 6.11, SAS Institute Inc., Cary, NC, USA
  20. ShiraI, K., Revah-Molseev, S., Garcia-Garibay, M., and Marshall, V. M. (1994) Ability of some strains of lactic acid bacteria to degrade phytic acid. Lett. Appl. Microbiol. 19, 366-369 https://doi.org/10.1111/j.1472-765X.1994.tb00477.x
  21. Tannock G. W., Crichton C., Welling G. W. Koopman J. P., and Midtvedt, T. (1988) Reconstitution of the gastrointestinal microflora of lactobacillus-free mice. Appl. Environ. Microbiol. 54, 2971-2975
  22. Tannock, G. W. (1997) Probiotic properties of lactic acid bacteri: plenty of scope for fundamental R&D. Trends Biotechnol. 15, 270-274 https://doi.org/10.1016/S0167-7799(97)01056-1
  23. Walsh, G. A., Power R. F., and Headon D. R. (1993) Enzymes in the animal-feed industry. Tibtech. 11, 424-429 https://doi.org/10.1016/0167-7799(93)90006-U
  24. Williams et al. (1986) Bergey's manual of systematic bacteriology. Volume 2. Waverly press, Baltimore, USA
  25. You, S. J., Cho, J.-K., Hwang, S.-G., and Heo, K.-C. (2005) Korean J. Food. Sci. Ani. Resour. 25, 357-364
  26. 강상모(1996) 류코노스톡 파라메센테로이디스를 김치제조시 스타터로 첨가하는 방법. 대한민국 특허출원 제1996-033361호
  27. 이종화(2006) 축산신문. 2006년 12월 19일 [2072호]
  28. 전홍기(1998) 효소학. 부산대학교출판부, p. 486

Cited by

  1. Effect of Acetic Acid Concentration and Mixed Culture of Lactic Acid Bacteria on Producing Bacterial Cellulose Using Gluconacetobacter sp. gel_SEA623-2 vol.50, pp.3, 2014, https://doi.org/10.7845/kjm.2014.4062
  2. Growth Characteristics and Physiological Properties in Milk of Lactobacillus casei CU2604 Isolated from Adult Feces vol.29, pp.5, 2009, https://doi.org/10.5851/kosfa.2009.29.5.619
  3. Repeated-Dose Oral Toxicity Study of Lactobacillus Plantarum AF1 Isolated from Kimchi in Rats vol.41, pp.5, 2012, https://doi.org/10.3746/jkfn.2012.41.5.612
  4. Identification of β-Glucosidase Activity ofLactobacillus plantarum CRNB22 in Kimchi and Its Potential to Convert Ginsenoside Rb1fromPanax Ginseng vol.39, pp.2, 2015, https://doi.org/10.1111/jfbc.12116
  5. Screening of Effective Medium Composition for the Cultivation of Lactobacillus plantarum and Lactobacillus reuteri Using Statistical Methods vol.22, pp.5, 2012, https://doi.org/10.5352/JLS.2012.22.5.575
  6. Lactobacillus brevis Strains from Fermented Aloe vera Survive Gastroduodenal Environment and Suppress Common Food Borne Enteropathogens vol.9, pp.3, 2014, https://doi.org/10.1371/journal.pone.0090866
  7. Lactobacillus plantarum MKHA15와 Leuconostoc mesenteroides MKSR을 첨가한 발효 채소 주스의 특성 vol.25, pp.4, 2007, https://doi.org/10.14373/jkda.2019.25.4.281