References
- M. Mansour, 'Robust stability of interval matrices,' Proc. of the 28th IEEE Conf. on Decision and Control, pp. 46-51, 1989
- M. E. Sezer and D. D. Siljak, 'On stability of interval matrices,' IEEE Trans. on Automatic Control, vol. 39, no. 2, pp. 368-371, 1994 https://doi.org/10.1109/9.272336
- K. Wang, A. N. Michel, and D. Liu, 'Necessary and sufficient conditions for the Hurwitz and Schur stability of interval matrices,' IEEE Trans. on Automatic Control, vol. 39, no. 6, pp. 1251-1255, 1994 https://doi.org/10.1109/9.293189
- J. Rohn, 'An algorithm for checking stability of symmetric interval matrices,' IEEE Trans. on Automatic Control, vol. 41, no. 1, pp. 133-136, 1996 https://doi.org/10.1109/9.481618
- Y. Xiao and R. Unbehauen, 'Robust Hurwitz and Schur stability test for interval matrices,' Proc. of the 39th IEEE Conf. on Decision and Control, pp. 4209-4214, 2000
- R. K. Yedavalli, 'A necessary and sufficient 'extreme point' solution for checking robust stability of interval matrices,' Proc. of American Control Conference, pp. 1893-1897, 1999
- R. K. Yedavalli, 'An improved extreme point solution for checking robust stability of interval matrices with much reduced vertex set and combinatorial effort,' Proc. of American Control Conference, pp. 3902-3907, 2001
- D. Peaucelle, D. Arzelier, O. Bachelier, and J. Bernussou, 'A new robust D-stability condition for real convex polytopic uncertainty,' Systems & Control Letters, vol. 40, no. 1, pp. 21-30, 2000 https://doi.org/10.1016/S0167-6911(99)00119-X
- V. J. S. Leite and P. L. D. Peres, 'An improved LMI condition for robust D-stability of uncertain polytopic systems,' IEEE Trans. on Automatic Control, vol. 48, no. 3, pp. 500-504, 2003 https://doi.org/10.1109/TAC.2003.809167
- D. Arzelier, D. Henrion, and D. Peaucelle, 'Robust D stabilization of a polytope of matrices,' International Journal of Control, vol. 75, no. 10, pp. 744-752, 2002 https://doi.org/10.1080/00207170210141824