Adaptive Observer using Auto-generating B-splines

  • Published : 2007.10.31

Abstract

This paper presents a new adaptive observer design method for a class of uncertain nonlinear systems by using spline approximation. This scheme leads to a simplified observer structure which requires only fixed number of integrations, regardless of the number of parameters to be estimated. This benefit can reduce the number of integrations of the observer filter dramatically. Moreover, the proposed adaptive observer automatically generates the required spline elements according to the varying output value and, as a result, does not requires the pre-knowledge of upper and lower bounds of the output. This is another benefit of our approach since the requirement for known output bounds have been one of the main drawbacks of practical universal approximation problems. Both of the benefits stem from the local support property, which is specific to splines.

Keywords

References

  1. L. Ljung, System Identification - Theory for the User, Prentice-Hall, 1987
  2. G. Luders and K. S. Narendra, 'An adaptive observer and identifier for a linear system,' IEEE Trans. on Automatic Control, vol. 18, no. 5, pp. 496-499,1973 https://doi.org/10.1109/TAC.1973.1100369
  3. R. Carroll and D. Lindor, 'An adaptive observer for single input single output linear systems,' IEEE Trans. on Automatic Control, vol. 18, no. 5, pp. 428-435, 1973 https://doi.org/10.1109/TAC.1973.1100367
  4. I. Landau, Adaptive Control - The Model Reference Approach, Marcel Dekker, New York, 1979
  5. K. Narendra and A. Annaswamy, Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, NJ, 1989
  6. P. Ioannou and J. Sun, Robust Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, 1989
  7. S. Sastry and M. Bodson, Adaptive Control - Stability, Convergence and Robustness, Prentice- Hall, Englewood Cliffs, NJ, 1989
  8. K. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley, Reading, MA, 1989
  9. R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice Hall, New York, 1995
  10. G. Besancon, 'Remarks on adaptive observers for nonlinear systems,' Systems & Control Letters, vol. 41, pp. 271-280, 2000 https://doi.org/10.1016/S0167-6911(00)00065-7
  11. G. Bastin and M. Gevers, 'Stable adaptive observers for nonlinear time-varying systems,' IEEE Trans. on Automatic Control, vol. 33, no. 7, pp. 650-658, 1988 https://doi.org/10.1109/9.1273
  12. G. Luders and K. S. Narendra, 'A new canonical form for an adaptive observer,' IEEE Trans. on Automatic Control, vol. 19, no. 2, pp. 117-119, 1973
  13. R. Marino, 'Adaptive observers for single output nonlinear systems,' IEEE Trans. on Automatic Control, vol. 35, no. 9, pp. 1054-1058, 1990 https://doi.org/10.1109/9.58536
  14. R. Marino and P. Tomei, 'Global adaptive observers for nonlinear systems via filtered transformations,' IEEE Trans. on Automatic Control, vol. 37, no. 8, pp. 1239-1245, 1992 https://doi.org/10.1109/9.151117
  15. A. Isidori, Nonlinear Control Systems, 3rd edition, Springer-Verlag, Berlin, 1996
  16. G. Rovithakis and M. Christodulou, 'Direct adaptive regulation of unknown nonlinear dynamical systems via dynamic neural networks,' IEEE Trans. on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 25, no. 12, pp. 1578-1594, 1995 https://doi.org/10.1109/21.478444
  17. A. Poznyak, W. Yu, E. Sanchez, and J. Perez, 'Nonlinear adaptive trajectory tracking using dynamic neural networks,' IEEE Trans. on Neural Networks, vol. 10, no. 6, pp. 1402-1411, 1999 https://doi.org/10.1109/72.809085
  18. F. Lewis, A. Yesildirek, and K. Liu, 'Multilayer neural-net robot controller with guaranteed tracking performance,' IEEE Trans. on Neural Networks, vol. 7, no. 2, pp. 388-399, 1996 https://doi.org/10.1109/72.485674
  19. R. Sanner and J.-J. Slotine, 'Gaussian networks for direct adaptive control,' IEEE Trans. on Neural Networks, vol. 3, no. 6, pp. 837-863, 1992 https://doi.org/10.1109/72.165588
  20. E. Tzirkel-Hancock and F. Fallside, 'Stable control of nonlinear systems using neural networks,' Int. J. Robust Nonlinear Control, vol. 2, pp. 63-86, 1992 https://doi.org/10.1002/rnc.4590020105
  21. K. Narendra and A. Annaswamy, 'Identification and control of dynamic systems using neural networks,' IEEE Trans. on Neural Networks, vol. 1, pp. 4-27, 1990 https://doi.org/10.1109/72.80202
  22. A. Karakasoglu, S. Sudharsanan, and M. Sundhareshan, 'Identification and decentralized adaptive control using neural networks with application to robotic manipulators,' IEEE Trans. on Neural Networks, vol. 4, pp. 919-930, 1993 https://doi.org/10.1109/72.286887
  23. F. Chen and H. Khalil, 'Adaptive control of a class of nonlinear discrete-time systems using neural networks,' IEEE Trans. on Automatic Control, vol. 40, no. 5, pp. 791-801, 1995 https://doi.org/10.1109/9.384214
  24. J. Farrell, 'Stability and approximator convergence in nonparametrix nonlinear adaptive control,' IEEE Trans. on Neural Networks, vol. 9, pp. 1008-1020, 1998 https://doi.org/10.1109/72.712182
  25. Z. Zong and K. Lam, 'Estimation of complicated distributions using B-spline functions,' Structural Safety, vol. 20, pp. 341- 355, 1998 https://doi.org/10.1016/S0167-4730(98)00019-8
  26. G. Lightbody, P. O'Reilly, G. Irwin, K. Kelly, and J. McCormick, 'Neural modeling of chemical plant using mlp and B-spline networks,' Control Eng. Practice, vol. 5, no. 11, pp. 1501-1515, 1997 https://doi.org/10.1016/S0967-0661(97)10004-1
  27. R. Panda, G. Rath, and B. Chatterji, 'Generalized b-spline signal processing,' Signal Processing, vol. 55, pp. 1-14, 1996 https://doi.org/10.1016/S0165-1684(96)00116-8
  28. J. Zhang, S. Koper, and A. Knoll, 'Extracting compact fuzzy rules based on adaptive data approximation using b-splines,' Information Sciences, vol. 142, pp. 227-248, 2002 https://doi.org/10.1016/S0020-0255(02)00167-6
  29. P. Rutuparna and B. Chatterji, 'Least squares generalized b-spline signal and image processing,' Signal Processing, vol. 81, pp. 2005-2017, 2001 https://doi.org/10.1016/S0165-1684(01)00022-6
  30. A. Anile, B. Falcidieno, G. Gallo, M. Spagnuolo, and S. Spinello, 'Modeling uncertain data with fuzzy B-splines,' Fuzzy Sets and Systems, vol. 113, pp. 397-410, 2000 https://doi.org/10.1016/S0165-0114(98)00146-8
  31. Z. Luo andWahba, 'Hybrid adaptive splines,' Journal of the American Statistical Association, vol. 92, pp. 107-116, 1997 https://doi.org/10.2307/2291454
  32. E. J. Wegman and I. Wright, 'Splines in statistics,' Journal of the American Statistical Association, vol. 78, no. 382, pp. 351-365, 1983 https://doi.org/10.2307/2288640
  33. M. Egerstedt and C. F. Martin, 'Optimal trajectory planning and smoothing splines,' Automatica, vol. 37, no. 7, pp. 1057-1064, 2001 https://doi.org/10.1016/S0005-1098(01)00055-3
  34. H. Kano, M. Egerstedt, H. Nakata, and C. F. Martin, 'B-splines and control theory,' Applied Mathematics and Computation, vol. 145, pp. 263-288, 2003 https://doi.org/10.1016/S0096-3003(02)00486-1
  35. S. Haykin, Neural Networks: A Comprehensive Foundation, Macmillan, NY, 1994
  36. C. D. Boor, A Practical Guide to Splines, Springer Verlag, New York, 1978
  37. W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Inc., New York, 1976
  38. M. Kristic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, Wiley, New York, 1995
  39. M. Kristic and P. Kokotovic, 'Adaptive nonlinear control with controller-identifier separation and swapping,' IEEE Trans. on Automatic Control, vol. 40, pp. 426-440, 1995 https://doi.org/10.1109/9.376055
  40. G. Kreisselmeier, 'Adaptive observers with exponential rate of convergence,' IEEE Trans. on Automatic Control, vol. 22, pp. 2-8, 1977 https://doi.org/10.1109/TAC.1977.1101401
  41. Q. Zhang, 'Adaptive observer for MIMO linear time varying systems,' Institut de Recherche en Informatique et Systemes Aleatoires, France, Campus de Beaulieu Rennes Cedex - France, Tech. Rep., 2001
  42. M. Krstic and H. Deng, Stabilization of Nonlinear Uncertain Systems, Springer-Verlag, Berlin, 1998