Preparation and Characterization of Multiwalled Carbon Nanotubes/Lyocell Composite Fibers

다중벽 탄소나노튜브/리오셀 복합섬유의 제조 및 특성조사

  • Lu, Jiang (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University) ;
  • Zhang, Huihui (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University) ;
  • Shao, Huili (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University) ;
  • Hu, Xuechao (State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University)
  • Published : 2007.09.30

Abstract

In this work, the multiwalled carbon nanotubes(MWNTs) were functionalized with sodium dodecylbenzene sulfonate(SDBS) and then MWNTs/Lyocell composite fibers were prepared. The properties of MWNTs, the functionlization on the surface of MWNTs and their dispersion in the cellulose matrix were characterized by TEM, SEM, WAXD and FT-IR. The results showed that SDBS has been coated successfully onto the surface of the MWNTs by functionlization. This can improve effectively the dispersion uniformity of MWNTs in NMMO aqueous solution and is helpful to prepare a spinnable spinning dope. Moreover, the resultant MWNTs/Lyocell composite fibers still have cellulose II crystal structure, and their tensile strength and initial modulus increased with the increasing draw ratio and reached the optimal value with adding 1 wt% MWNTs. The thermal stability of the composite fiber was also improved by the addition of the MWNTs.

Keywords

References

  1. S. Iijima, Nature, 354, 56 (1999) https://doi.org/10.1038/354056a0
  2. H. Dai, E. Wong, and C. Lieber, Science, 272, 523 (1996) https://doi.org/10.1126/science.272.5261.523
  3. W. Zhang, L. Shen, I. Phang, and T. Liu, Macromolecules, 37, 256 (2004) https://doi.org/10.1021/ma035594f
  4. Y. P. Wang, R. L. Cheng, L. L. Liang, and Y. M. Wang, Compos. Sci. Technol., 65, 793 (2005) https://doi.org/10.1016/j.compscitech.2004.10.012
  5. H. P. Fink, P. Weigel, H. J. Purz, and J. Ganster. Progress in Polymer Science, 26, 1473 (2001) https://doi.org/10.1016/S0079-6700(01)00025-9
  6. F. Meister, D. Vorbach, Ch. Michels, R. Maron, K. Berghof, and E. Taeger, Chemical Fibers Intern., 48, 32 (1998)
  7. H. H. Zhang, L. W. Guo, H. L. Shao, and X. C. Hu, J. Appl. Polym. Sci, 99, 65 (2006) https://doi.org/10.1002/app.22184
  8. S. Porroa, S. Mussoa, M. Vinante, L. Vanzetti, M. Anderle, F. Trotta, and A. Tagliaferro, Physics E,37, 58 (2007)
  9. Y. Lin, B. Zhou, and K. Fernando, Macromolecules, 36, 7199 (2003) https://doi.org/10.1021/ma0348876
  10. I. Chiang, B. Brinson, R. Smalley, J. Margrave, and R. Hauge, J. Phys. Chem. B, 6, 1157 (2001)
  11. K. Nakanshi and P. Solomon, Infrared Absorption Spectroscopy, Holden-Day, Oakland, CA. 1977
  12. V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, and R. E. Smalley, Nano. Lett., 10, 269 (2003)
  13. X. Gong, J. Liu, S. Baskaren, R. Voise, and J. Young, Chem. Mater., 12, 1049 (2000) https://doi.org/10.1021/cm9906396
  14. M. Shaffer and A. Windle, Adv. Meter., 1, 937 (1999)
  15. G. Hwang, Y. Shieh, and K. Hwang, Adv. Funct. Meter., 14, 487 (2004) https://doi.org/10.1002/adfm.200305382
  16. P. Potschke, T. Fornes, and D. Paul, Polymer, 43, 3247 (2002) https://doi.org/10.1016/S0032-3861(02)00151-9
  17. M. D. Frogley, D. Ravich, and H. D. Wagner, Comp. Sci Technol., 63, 1647 (2003) https://doi.org/10.1016/S0266-3538(03)00066-6
  18. J. W. Ning, J. J. Zhang, Y. B. Pan, and J. K. Guo, Mater. Sci. Eng. A, 357, 392 (2003) https://doi.org/10.1016/S0921-5093(03)00256-9