Ultra High Molecular Weight Polyethylene Nanocomposite Films : Thermomechanical Property, Morphology, and Gas Permeability

초고분자량 폴리에틸렌 나노복합체 필름 : 열적-기계적 성질, 모폴로지 및 기체 투과도

  • Jung, Min-Hye (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Kim, Jeong-Cheol (Gwangju R&D Center, Korea Institute of Industrial Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 정민혜 (금오공과대학교 고분자공학과) ;
  • 김정철 (생산기술연구원) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Published : 2007.09.30

Abstract

The thermomechanical property, morphology, and gas permeability of nanocomposites of ultra high molecular weight polyethylene (UHMWPE) with two different organoclays are compared. Hexamethylene benzimidazole-mica ($C_{16}BIMD-Mica$) and Cloisite 25A were used as reinforcing fillers in the formation of UHMWPE hybrid films. Dispersions of organoclays with UHMWPE were carried out by using the solution intercalation method at different organoclay contents to produce nano-scale composites. Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermomechanical property and gas barrier of the UHMWPE hybrid films. In general, Cloisite 25A is more effective than $C_{16}BIMD-Mica$ in increasing both the thermomechanical property and the gas barrier in a UHMWPE matrix.

종류가 다른 두 가지 유기화 점토를 사용하여 얻은 초고분자량 폴리에틸렌(UHMWPE) 나노복합재료의 열적, 기계적 성질 및 기체 투과도를 서로 비교하였다. UHMWPE 복합체 필름을 얻기 위해 유기화 점토로는 헥사메틸렌 벤즈이미다졸-마이카($C_{16}BIMD-Mica$)와 Cloisite 25A가 사용되었다. 용액 삽입법을 이용하여 UHMWPE에 여러 다른 농도의 유기화 점토를 분산시켜 나노 크기의 복합재료를 합성하였다. 투과 전자 현미경(TEM)을 이용하여 비록 일부는 뭉쳐진 점토의 형태를 나타내었지만 한편으로는 점토가 나노 크기로 고루 분산되었음을 확인하였다. 약간의 유기화 점토 첨가(1-3 wt%) 만으로도 순수한 UHMWPE에 비해서 나노복합재료의 열적, 기계적 성질 및 기체투과도 성질이 높아짐을 알았다. 또한 전체적으로는 첨가된 두가지 유기화 점토 모두 적당한 농도에서 UHMWPE의 물성 증가에 큰 효과가 있었으며, 매트릭스 고분자에 사용된 두 가지 충전제중 Cloisite 25A가 $C_{16}BIMD-Mica$ 보다더 우수한 물성을 보였다.

Keywords

References

  1. J. S. Kong and S. Y. Han. Polymer Science and Technology, 12. 183 (2001) https://doi.org/10.1002/pat.133
  2. T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocompo sites, John Wiley & Sons, Chichester, England, 2001
  3. Y. Imai, S. Nishimura, E. Abe, H. Tateyama. A. Abiko, A. Yamaguchi. T. Aoyarna, and H. taguchi, Chem. Mster., 14, 477 (2002) https://doi.org/10.1021/cm010408a
  4. G. Lagaly, Appl. Clay. Sci, 15, 1 (1999) https://doi.org/10.1016/S0169-1317(99)00009-5
  5. A. Usuki, A. Koiwai, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi. and O. Kamigaito, J. Appl. Polym. Sci., 55, 119 (1995) https://doi.org/10.1002/app.1995.070550113
  6. K. Yano, A. Usuki, A. Okada, T. Kurauchi, and O. Kamigaito, J. Polytn. Sci.; Part A: Polym. Chem., 31, 2493 (1993) https://doi.org/10.1002/pola.1993.080311009
  7. M. A. Osman, V. Mittal, M. Morbidelli, and U. W. Suter, Macromolecules, 36, 9851 (2003) https://doi.org/10.1021/ma035077x
  8. R. K. Bharadwa J. Macromolecules, 34, 9189 (2001) https://doi.org/10.1021/ma010780b
  9. J.-H, Chang, Y. U. An, and G. S. Sur, J. Polym. Sci.; Part B: Polym. Phys., 41, 94 (2003) https://doi.org/10.1002/polb.10349
  10. J.-H. Chang, J. H. Yeun, G. S. Bang, B. J. Park. and S. K. Ham, J. Appl. Polym. Sci., 101, 591 (2006) https://doi.org/10.1002/app.23372
  11. Y. Fukushima, A. Okada, M. Kawasumi, T. Kurauchi. and O. Kamigaito, Clay Miner., 23, 27 (1998) https://doi.org/10.1180/claymin.1988.023.1.03
  12. J. S. Shelley, P. T. Mather, and K. L. DeVries, Polymer, 42, 5849 (2001) https://doi.org/10.1016/S0032-3861(00)00900-9
  13. Y. Li and H. Ishida, Chem. Meter., 14, 1398 (2002) https://doi.org/10.1021/cm0103747
  14. X. Li, T. Kang. W.-J. Jo, J.-K. Lee, and C.-S. Ha, Macromol. Rspid. Commum., 22, 1306 (2001) https://doi.org/10.1002/1521-3927(20011101)22:16<1306::AID-MARC1306>3.0.CO;2-I
  15. J.-H. Chang, S. J. Kim, and M. K. Mun, Poiymer(Kores), 29, 190 (2005)
  16. K. E. Strawhecker and E. Manias, Chem. Mater., 12, 2934 (2000)
  17. I. Cendoya, D. Lopez, A. Alegria, and C. Mijangos, J. Polym. Sci.; Part B: Polym. Phys., 39, 1968 (2001) https://doi.org/10.1002/polb.1172
  18. J.-H. Chang, T. G. Jang, K. J. Ihn, W. K. Lee, and G. S. Sur, J. Appl. Polytn. Sci, 90, 3208 (2003) https://doi.org/10.1002/app.12996
  19. I. L. Jin, T. T. Albrecht, H. C. Kim, T. P. Russell, and J. Wang, Polymer, 42, 5947 (2001) https://doi.org/10.1016/S0032-3861(00)00898-3
  20. S. Hotta and D. R. Paul, Polymer, 45, 7639 (2004) https://doi.org/10.1016/j.polymer.2004.08.059
  21. M. A. Osman, J. E. P. Rupp, and U. W. Suter, Polymer, 46, 8202 (2005) https://doi.org/10.1016/j.polymer.2005.06.101
  22. S. H. Ryu and Y. W. Chang, Polym. Bull., 55, 385 (2005) https://doi.org/10.1007/s00289-005-0437-7
  23. L. Szazdi, B. P. Jr, G. J. Vancso, and B. Pukanszky. Polymer, 47, 4638 (2006) https://doi.org/10.1016/j.polymer.2006.04.053
  24. J.-H. Chang and Y. U. An, J. Polym, Sci.; Part B: Polym. Phys., 40, 670 (2002) https://doi.org/10.1002/polb.10124
  25. S. H. Hsiao, G. S. Liou, and M. Chang, J. Appl. Polym. Sci, 80, 2067 (2001) https://doi.org/10.1002/app.1306
  26. Y. Ke, J. Lu, X. Yi, J. Zhao, and Z. Qi, J. Appl. Polym. Sci., 78, 808 (2000) https://doi.org/10.1002/1097-4628(20001024)78:4<808::AID-APP140>3.0.CO;2-9
  27. J.- H. Chang, S. J. Kim, and S. Im, Polymer, 45, 5171 (2004) https://doi.org/10.1016/j.polymer.2004.05.012
  28. J.-H. Chang, M. K. Mun, and I. C. Lee, J. Appl. Polym. Sci., 98, 2009 (2005) https://doi.org/10.1002/app.22382
  29. A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci, 87, 808 (2003)
  30. C. H. Davis, L. J. Mathias, J.W. Gilman, D. A. Schiraldi, J. R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong, J. Polym. Sci.; Part B: Polytn. Phys., 40, 2661 (2002) https://doi.org/10.1002/polb.10331
  31. G. Galgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001) https://doi.org/10.1021/ma000565f
  32. R. A. Vaia, K. D. Jandt. E. J. Kramer, and E. P. Giannelis, Chem. Mater., 8, 2628 (1996) https://doi.org/10.1021/cm960102h
  33. J.-H. Chang, B. S. Seo, and D. H. Hwang, Polymer, 43, 2969 (2002)
  34. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002) https://doi.org/10.1016/S0032-3861(02)00400-7
  35. J. -H. Chang and B. Y. Jo, J. Appl. Polym. Sci. 60, 939 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960516)60:7<939::AID-APP3>3.0.CO;2-N
  36. K. K. Chawla, Composite Materials Science and Engineering, Springer-Verlag, New York, 1987
  37. W. A. Curtin, J. Am. Ceram Soc., 74, 2837 (1991) https://doi.org/10.1111/j.1151-2916.1991.tb06852.x
  38. L. Chen and S.-C. Wong, J. Appl. Polym. Sci, 88, 3298 (2003) https://doi.org/10.1002/app.12153
  39. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993) https://doi.org/10.1557/JMR.1993.1185
  40. D. Jarus, A. Hiltner, and E. Baer, Polymer, 43, 2401 (2002) https://doi.org/10.1016/S0032-3861(01)00790-X
  41. C. Joly, M. Smaihi, L. Porcar, and R. D. Noble, Chem. Mater., 11, 2331 (1999) https://doi.org/10.1021/cm9805018
  42. T. Ebeling, S. Norek, A. Hasan, A. Hiltner, and E. Baer, J. Appl. Polym. Sci, 71, 1461 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990228)71:9<1461::AID-APP11>3.0.CO;2-0
  43. D. H. Weinkauf and D. R. Paul, In Effect of Structural Order on Barrier Properties, W. J. Koros, American Chemical Society, Washington, DC, 1990
  44. K. Ghosal, B. D. Freeman, R. T. Chern, J. C. Alvarez, J. G. de la Camoa, A. E. Lozano, and J. de Abajo, Polymer, 36, 793 (1995) https://doi.org/10.1016/0032-3861(95)93110-8
  45. B. Xu, Q. Zheng, Y. Song, and Y. Shangguan, Polymer, 47, 2904 (2006) https://doi.org/10.1016/j.polymer.2006.02.069