Improved Ultrastructural Preservation of Retinal Cells in Drosophila melanogaster

초고압동결장치를 이용한 초파리 레티나 세포의 향상된 미세구조

  • Mun, Ji-Young (Laboratory of Cell Engineering & 3-D Structure, School of Life Sciences and Biotechnology, Korea University) ;
  • Park, Se-Jin (Laboratory of Cell Engineering & 3-D Structure, School of Life Sciences and Biotechnology, Korea University) ;
  • Han, Sung-Sik (Laboratory of Cell Engineering & 3-D Structure, School of Life Sciences and Biotechnology, Korea University)
  • 문지영 (고려대학교 생명과학대학 생명공학원 세포공학 및 생체3차구조 연구실) ;
  • 박세진 (고려대학교 생명과학대학 생명공학원 세포공학 및 생체3차구조 연구실) ;
  • 한성식 (고려대학교 생명과학대학 생명공학원 세포공학 및 생체3차구조 연구실)
  • Published : 2007.09.30

Abstract

The Drosophila retinal cell is widely used to study cell development and cell signaling processes. In the past decades, conventional chemical fixation had been used to study the structure of retinal cells in Droscphila. Rapid freezing methods are superior to chemical fixation methods due to their fixation speed. Some Drosophila tissues, such as the eyes, should not be freezed due to their surrounding cuticle layer. Therefore, in the case of the Drosophila retina, the benefits of high pressure freezing and freeze substitution (HPF-FS) had not been verified. In this study, a retinal cell from Drosophila melanogaster had been studied by using the HPF-FS method. Compared to chemical fixation, the preservation of the cytoplasm in the HPF-FS sample was improved on the whole. The HPF-FS cell membranes were smoother than that of chemical fixation. In addition, HPF-FS preserved the mitochondria structures very well. These results of the present study suggest that HPF-FS is superior to other fixation methods for the preservation of the retinal cell structure.

정확한 세포의 구조 분석을 위해서는 조직을 가능한 한 자연 상태 그대로 보존하는 것이 무엇보다 중요하다. 그러나 지금까지 이용되고 있는 화학적인 고정방법은 조직의 변형을 유도하는 것으로 알려져 그 해결방법에 관한 연구가 활발히 진행되고 있다. 그 연구의 결과로 현재 급속 동결법이 제시되었고, 그 중 초고압동결법(high-pressure freezing method)는 가용 두께가 $200{\mu}m$로서 $10{\sim}15{\mu}m$정도인 침윤동결법(plunging method) 혹은 접촉동결법 (slamming method)보다 우수한 방법으로 보고되고 있다. 본 연구팀에는 노랑초파리(Drosophila melanogaster)의 레티나를 화학고정법과 고압동결법으로 고정하여 미세구조를 비교하였다. 먼저 120kV 전자현미경을 이용하여 각 세포 소기관을 비교하였고, 그 중 미토콘드리아의 형태변화를 좀 더 자세히 비교하기 위하여 초고압전자현미경을 이용하였다. 그 결과 급속동결 세포의 세포막과 미토콘드리아의 고정에서 특히 차이가 있음을 알 수 있었고, 이는 주로 탈수에 의한 구조변형 때문인 것으로 추측된다.

Keywords

References

  1. Alone DP, Tiwari AK, Mandal L, Li M, Mechler BM, Roy JK: Rab11 is required during Drosophila eye development. The International Journal of Developmental Biology 49 : 873-879, 2005 https://doi.org/10.1387/ijdb.051986da
  2. Bared SM, Buechler C, Boettcher A, Dayoub R, Sigruener A, Grandl M, Rudolph C, Dada A, Schmitz G: Association of ABCA1 with syntaxin 13 and flotillin-1 and enhanced phagocytosis in tangier cells. Molecular biology of the cell 15 : 5399-5407, 2004 https://doi.org/10.1091/mbc.E04-03-0182
  3. Bravo-Nuevo A, Williams N, Geller S, Stone J: Mitochondrial deletions in normal and degenerating rat retina. Advances in experimental medicine and biology 533 : 241-248, 2003
  4. Dempsey GP, Bullivant S: A copper block method for freezing non-cryoprotected tissue to produce ice-crystalfree regions for electron microscopy. I. Evaluation using freeze-substitution. Journal of microscopy 106 : 251-260, 1976 https://doi.org/10.1111/j.1365-2818.1976.tb02405.x
  5. Harder T, Scheiffele P, Verkade P, Simons K: Lipid domain structure of the plasma membrane revealed by patching of membrane components. The Journal of cell biology 141 : 929-942, 1998 https://doi.org/10.1083/jcb.141.4.929
  6. Harvey DM: Freeze-substitution. Journal of microscopy 127 (Pt 2) : 209-221, 1982 https://doi.org/10.1111/j.1365-2818.1982.tb00414.x
  7. Hayat MA: Principles and techniques of electron microscopy. 3rd ed, CRC Press, Boca Raton, Florida, 2000
  8. Hoehne M, de Couet HG, Stuermer CA, Fischbach KF: Lossand gain of-function analysis of the lipid raft proteins Reggie/Flotillin in Drosophila: they are post-translationally regulated, and misexpression interferes with wing and eye development. Molecular and cellular neurosciences 30 : 326-338, 2005 https://doi.org/10.1016/j.mcn.2005.07.007
  9. Ikeda H, Ichikawa A, Ichikawa M: The effects of freeze-substitution media on the ultrastructure of inclusion bodies in type II pneumocytes of mouse lung processed by the cryofixation method. Journal of electron microscopy 33 : 242-247, 1984
  10. Kumar JP, Ready DF: Rhodopsin plays an essential structural role in Drosophila photoreceptor development. Development 121 : 4359-4370, 1995
  11. Lee R: A critical appraisal of the effects of fixation, dehydration and embedding on cell volume. SEM inc, Chicago, 1984
  12. Longley RL Jr, Ready DF: Integrins and the development of threedimensional structure in the Drosophila compound eye. Developmental biology 171 : 415- 433, 1995 https://doi.org/10.1006/dbio.1995.1292
  13. McDonald K: High-pressure freezing for preservation of high resolution fine structure and antigenicity for immunolabeling. Methods in molecular biology 117 : 77-97, 1999
  14. McDonald K, Morphew MK: Improved preservation of ultrastructure in difficult-to-fix organisms by high pressure freezing and freeze substitution: I. Drosophila melanogaster and Strongylocentrotus purpuratus embryos. Microscopy research and technique 24 : 465-473, 1993 https://doi.org/10.1002/jemt.1070240603
  15. McDonald KL: Electron microscopy and EM immunocytochemistry. Methods in cell biology 44 : 411-444, 1994 https://doi.org/10.1016/S0091-679X(08)60926-7
  16. Monaghan P, Perusinghe N, Muller M: High-pressure freezing for immunocytochemistry. Journal of microscopy 192 (Pt 3) : 248-258, 1998 https://doi.org/10.1046/j.1365-2818.1998.00387.x
  17. Moraes CT, Shanske S, Tritschler HJ, Aprille JR, Andreetta F, Bonilla E, Schon EA, DiMauro S: mtDNA depletion with variable tissue expression: a novel genetic abnormality in mitochondrial diseases. American journal of human genetics 48 : 492-501, 1991
  18. Muller-Reichert T, Hohenberg H, O'Toole ET, McDonald K: Cryoimmobilization and three-dimensional visualization of C. elegans ultrastructure. Journal of microscopy 212 : 71-80, 2003 https://doi.org/10.1046/j.1365-2818.2003.01250.x
  19. Nagano T, Kamimura K: Mouse Leydig cells processed by freeze-substitution, with particular reference to the lamellar arrangement of the smooth endoplasmic reticulum. Journal of electron microscopy 36 : 128-132, 1987
  20. Nitta K, Kaneko Y: Simple plunge freezing applied to plant tissues for capturing the ultrastructure close to the living state. Journal of electron microscopy 53 : 677-680, 2004 https://doi.org/10.1093/jmicro/dfh092
  21. Ornber RL, Reese TS: Beginning of exocytosis captured by rapid-freezing of Limulus amebocytes. The Journal of cell biology 90 : 40-54, 1981 https://doi.org/10.1083/jcb.90.1.40
  22. Parkin ET, Turner AJ, Hooper NM: Amyloid precursor protein, although partially detergent-insoluble in mouse cerebral cortex, behaves as an atypical lipid raft protein. The Biochemical journal 344 (Pt 1) : 23-30, 1999 https://doi.org/10.1042/0264-6021:3440023
  23. Perkins GA, Ellisman MH, Fox DA: Three-dimensional analysis of mouse rod and cone mitochondrial cristae architecture: bioenergetic and functional implications. Molecular vision 9 : 60-73, 2003
  24. Perry MM: Further studies on the development of the eye of Drosophila melanogaster. I. The ommatidia. Journal of morphology 124 : 227-248, 1968 https://doi.org/10.1002/jmor.1051240208
  25. Ready DF, Hanson TE, Benzer S: Development of the Drosophila retina, a neurocrystalline lattice. Developmental biology 53 : 217-240, 1976 https://doi.org/10.1016/0012-1606(76)90225-6
  26. Sargiacomo M, Sudol M, Tang Z, Lisanti MP: Signal transducing molecules and glycosyl-phosphatidylinositol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. The Journal of cell biology 122 : 789-807, 1993 https://doi.org/10.1083/jcb.122.4.789
  27. Simons K, Vaz WL: Model systems, lipid rafts, and cell membranes. Annual review of biophysics and biomolecular structure, 33 : 269-295, 2004 https://doi.org/10.1146/annurev.biophys.32.110601.141803
  28. Steinbrecht RA, Zierold K: A cryoembedding method for cutting ultrathin cryosections from small frozen specimens. Journal of microscopy 136 (Pt 1) : 69-75, 1984 https://doi.org/10.1111/j.1365-2818.1984.tb02546.x
  29. Studer D, Michel M, Muller M: High pressure freezing comes of age. Scanning microscopy Supplement 3 : 253-268; discussion 268-269, 1989
  30. Studer D, Michel M, Wohlwend M, Hunziker EB, Buschmann MD: Vitrification of articular cartilage by high-pressure freezing. Journal of microscopy 179 (Pt 3) : 321-332, 1995 https://doi.org/10.1111/j.1365-2818.1995.tb03648.x
  31. Tomlinson A: Cellular interactions in the developing Drosophila eye. Development 104 : 183-193, 1988
  32. Walz B, Baumann O: Calcium-sequestering cell organelles: in situ localization, morphological and functional characterization. Progress in histochemistry and cytochemistry 20 : 1-47, 1989
  33. Wolff T, Ready DF: Pattern formation in the Drosophila retina. Cold Spring Harbor Laboratory Press, New York, 1993