DOI QR코드

DOI QR Code

Automatic learning of fuzzy rules for the equivalent 2 layered hierarchical fuzzy system

동등 변환 2계층 퍼지 시스템의 규칙 자동 학습

  • 주문갑 (부경대학교 전자컴퓨터정보통신공학부)
  • Published : 2007.10.25

Abstract

To solve the rule explosion problem in multi-input fuzzy system, a method of converting a given fuzzy system to 2 layered hierarchical fuzzy system has been reported, where at the 1st layer, linearly independent fuzzy rule vectors generated from the given fuzzy system are used and, at the 2nd layer, linear combinations of these independent fuzzy rule vectors are used. In this paper, the steapest descent algorithm is presented to learn the fuzzy rule vectors and related coefficients for the equivalent 2 layered hierarchical structure. By simulation of learning of ball and beam control system, the feasibility of proposed learning scheme is shown.

본 논문에서는 다입력 퍼지 시스템에서 생기는 퍼지 규칙수의 기하급수적 증가를 막기 위하여, 1번째 계층에서는 주어진 퍼지 시스템으로부터 선형 독립의 퍼지 규칙 벡터를 구성하여 사용하고, 2계층에서는 1계층에서 사용된 퍼지 규칙 벡터들의 선형합을 사용하는 동등 변환된 2계층 퍼지시스템 구조에서, steapest descent 알고리듬을 이용한 퍼지 규칙의 자동 학습을 다룬다. 학습 방법의 타당성을 보이기 위하여, 공과 막대 시스템을 제어하는 기존의 퍼지 시스템을 학습한 결과를 보인다.

Keywords

References

  1. J. J. Buckley, 'Sugeno type controllers are universal controllers,' Fuzzy Sets and Systems, Vol. 53, 1993, pp.299-303 https://doi.org/10.1016/0165-0114(93)90401-3
  2. O. Huwendiek and W. Brockmann, 'Function approximation with decomposed fuzzy systems,' Fuzzy sets and systems, Vol. 101, 1999, pp. 273-286 https://doi.org/10.1016/S0165-0114(98)00170-5
  3. Li-Xin Wang, 'Universal approximation by hierarchical fuzzy systems,' Fuzzy sets and systems, Vol. 93, 1998, pp. 223-230 https://doi.org/10.1016/S0165-0114(96)00197-2
  4. Moon G. Joo and Jin S. Lee, 'Universal approximation by hierarchical fuzzy system with constraints on the fuzzy rule,' Fuzzy Sets and Systems, Vol. 130. no. 2, 2002, pp. 175-188 https://doi.org/10.1016/S0165-0114(01)00176-2
  5. Moon G. Joo and Jin S. Lee, 'A class of hierarchical fuzzy system with constraints on the fuzzy rule,' IEEE trans. Fuzzy System, Vol. 13. no. 2, 2005, pp. 194-203 https://doi.org/10.1109/TFUZZ.2004.840096
  6. R. Ordonez and K. M. Passino, 'Stable multi-input multi-output adaptive fuzzy/neural control,' IEEE trans. Fuzzy System, Vol. 30, no. 7, 1999, pp. 345-353
  7. M. G. Joo, Y. H. Kim, and T. Kang, 'Stable adaptive fuzzy control of molten steel level in the strip casting process,' IEE proceedings-Control Theory and Applications, Vol. 149, no. 5, 2002, pp. 357-364
  8. G. V. S. Raju, J. Zhou, and R. A. Kisner, 'Hierarchical fuzzy control,' Int. J. Contr., Vol. 54, no. 5, 1991, pp.1201-1216 https://doi.org/10.1080/00207179108934205
  9. G. V. S. Raju and Jun Zhou, 'Adaptive hierarchical fuzzy controller,' IEEE trans. on systems, man and cybernetics, Vol. 23, no. 4, Jul./Aug. 1993, pp. 973-980 https://doi.org/10.1109/21.247882
  10. Alexander E. Gegov, 'Multilayer fuzzy control of multivariable systems by direct decomposition,' Int. Journal of systems science, Vol. 29, no. 8, 1998, pp. 851-862 https://doi.org/10.1080/00207729808929577
  11. Madan M. Gupta, Jerzy B. Kiszka, and G. M. Trojan, 'Multivariable structure of fuzzy control systems,' IEEE trans. on systems, man, and cybernetics, Vol. SMC-16, no. 5, Sep./Oct. 1986, pp. 638-655
  12. Pyeong G. Lee, Kyun K. Lee, and Gi J. Jeon, 'An index of applicability for the decomposition method of multi variable fuzzy systems,' IEEE trans. on fuzzy systems, Vol. 3, no. 3, Aug. 1995, pp. 364-369 https://doi.org/10.1109/91.413224
  13. Silverio Bolognani and Mauro Zigliotto, 'Hardware and software effective configurations for multi-input fuzzy logic controllers,' IEEE trans. on fuzzy systems, Vol. 6, No.1, Feb. 1998, pp. 173-179 https://doi.org/10.1109/91.660817
  14. Hung-Pin Chen and Tai-Ming Parng, 'A new approach of multi-stage fuzzy logic inference,' Fuzzy sets and systems, Vol. 78, 1996, pp. 51-72 https://doi.org/10.1016/0165-0114(95)00110-7
  15. Fu-Lai Chung and Ji-Cheng Duan, 'On multistage fuzzy neural network modeling,' IEEE trans. on fuzzy systems, Vol. 8, no. 2, 2000, pp. 125-142 https://doi.org/10.1109/91.842148
  16. Ronald R. Yager, 'On the construction of hierarchical fuzzy systems models,' IEEE trans. on systems, man, and cybernetics, Vol. 28, no. 1, Feb. 1998, pp. 55-66 https://doi.org/10.1109/5326.661090
  17. Koji Shimojima, Toshio Fukuda, and Yasuhisa Hasegawa, 'Self-tuning fuzzy modeling with adaptive membership function, rules, and hierarchical structure based on genetic algorithm,' Fuzzy sets and systems, Vol. 71, 1995, pp. 295-309 https://doi.org/10.1016/0165-0114(94)00280-K
  18. Derek A. Linkens and H. Okola Nyongesa, 'A hierarchical multi variable fuzzy controller for learning with genetic algorithms,' Int. J. Contr., Vol. 63, no. 5, 1996, pp. 865-883 https://doi.org/10.1080/00207179608921873
  19. 주문갑, '퍼지 시스템의 2계층 퍼지 시스템으로의 변환방법,' 퍼지 및 지능시스템학회 논문지, Vol. 16, no. 3, 2006, pp. 303-308 https://doi.org/10.5391/JKIIS.2006.16.3.303
  20. J. Hauser, S. Sastry, and P. Kokotovic, 'Nonlinear control via approximate input-output linearization: The ball and beam example,' IEEE Trans. Automatic Control, Vol. 37,1992, pp. 392-398 https://doi.org/10.1109/9.119645