Acid Drainage and Damage Reduction Strategy in Construction Site: An Introduction

건설현장 산성배수의 발생현황 및 피해저감대책

  • Kim, Jae-Gon (Geological and Environmental Hazard Division, Korea Institute of Geoscience and Mineral Resources)
  • 김재곤 (한국지질자원연구원 지질환경재해연구부)
  • Published : 2007.10.28

Abstract

Acid drainage has been recognized as an environmental concern in abandoned mine sites for long time. Recently, the environmental and structural damage by acid drainage is a current issue in construction sites in Korea. Here, the author introduces the type of damages by acid drainage in construction sites and emphasizes the importance of geoscience discipline in solving the problem. Metasedimentary rock of Okcheon group, coal bed of Pyeongan group, Mesozoic volcanic rock. and Tertiary sedimentary and volcanic rocks are the major rock types with a high potential for acid drainage upon excavation in Korea. The acid drainage causes the acidification and heavy metal contamination of soil, surface water and groundwater, the reduction of slope stability, the corrosion of slope structure, the damage on plant growth, the damage on landscape and the deterioration of concrete and asphalt pavement. The countermeasure for acid drainage is the treatment of acid drainage and the prevention of acid drainage. The treatment of acid drainage can be classified into active and passive treatments depending on the degree of natural process in the treatment. Removal of oxidants, reduction of oxidant generation and encapsulation of sulfide are employed for the prevention of acid drainage generation.

산성광산배수는 휴폐광산 광해의 주요한 문제로 널리 인식되어 왔으며 최근 황화광물을 많이 함유한 지역의 지반굴착 건설현장에서 산성배수의 발생과 이로 인한 환경오염과 구조물의 안정성 저해가 건설 분야의 현안문제로 대두되고 있다. 지구과학분야에서 간과하고 있는 건설현장에서 발생된 산성배수에 의한 피해 사례를 소개하고 향후 피해 저감대책기술 개발과정에서 지구과학분야 역할의 중요성을 피력하고자 한다. 우리나라에서 산성배수를 발생시킬 개연성이 높은 대표적인 암석은 옥천층군 변성퇴적암, 평안층군 함탄층, 중생대 화산암, 제3기 퇴적암 및 화산암이며 우리나라 표면적의 약 20%정도를 차지할 것으로 추정된다. 최근 건설현장에서는 산성배수에 대한 적절한 대책이 수립되지 않고 대규모 절토와 터널굴착이 빈번히 이루어지고 있으며 향후 산성배수에 의한 피해는 지속적으로 발생될 것으로 판단된다. 건설현장의 산성배수는 토양, 지표수와 지하수의 산성화 및 중금속 오염, 식생고사, 경관훼손, 사면안정성 저해, 구조물 부식, 콘크리트 및 아스콘 노후화 촉진 등이다. 암석의 산성배수 발생개연성평가는 static test와 kinetic test 방법이 있으며, 암석의 산성배수 발생능력과 중화능력을 측정하여 암석의 산성배수 발생개연성을 간접적으로 추정하는 acid base accounting test가 가장 널리 활용되고 있다. 산성배수에 대한 피해저감대책은 산성배수의 처리와 발생억제로 구분된다. 산성배수 처리방법은 중화제 투입 등의 적극적 처리와 자연적인 물리 화학 생물학적 과정을 이용한 소극적 처리로 구분된다. 산성배수의 발생억제는 산화제의 제거와 생성억제, 산화제와 황화광물의 접촉차단으로 구분된다.도시되며 지역에 따라 위도효과를 보인다. 황산염에 대한 황동위원소 대부분 화성기원을 보인다. 그러나 JR1 온천은 고염수에서 기원한 것으로 보이는 해양성기원을 보인다. 온천수의 $^3He/^4He$ 비와 $^4He/^{20}Ne$ 비는 $0.0143{\times}10^{-6}{\sim}0.407{\times}10^{-6}$ 범위와 $6.49{\sim}584{\times}10^{-6}$ 범위를 각각 보여주어 대기와 지각성분의 혼합선상에 도시된다. 이는 온천수내 헬륨가스의 대부분이 지각기원임을 의미한다. 죽림온천(JR1)의 경우 맨틀기원의 헬륨가스의 혼합율이 다른 온천에 비해 다소 높은 비율을 보여준다. 이들 동위원소비와 온천수의 pH와는 대체적으로 정의 상관관계가 확인되었다. 아울러 $^{40}Ar/^{36}Ar$비가 $292.3{\times}10^{-6}{\sim}304.1{\times}10^{-6}$ 범위로 대기기원임을 지시한다. Gram 양성, Gram 음성 균주는 Escherichia coli KCCM 11591를 제외하고는 0.8 - 0.95 cm로 항균력이 강했으며, Gram negitive의 Pseudomonas aeruginosa KCTC 1750 에서는 43% 발효주에는 0.95 cm, 45% 고은 발효주에는 0.95 cm의 항균성을 나타냈으며 관능평가에서도 가장 높게 났다. 관능평가에서는 45% 고온 발효주가 가장 높게 나타났으며, 항산화성 실험에 나타난 저온 45%의 갈색도의 측정과는 항산화성에서는 좀 다른 결과를 나타낸다. 그러나 항균성이 가장

Keywords

References

  1. Belzile, N., Maki, S., Chen, Y. and Goldsack, D. (1997) Inhibition of pyrite oxidation by surface treatment. The Science of the Total Environment, v. 196, p. 177-186 https://doi.org/10.1016/S0048-9697(96)05410-1
  2. Benzaazoua, M., Marion, P., Picquet, I. and Bussiere. B. (2004) The use of pastefill as a solidification and stabilization process for the control of acid mine drainage. Minerals Engineering, v. 17, p. 233-243 https://doi.org/10.1016/j.mineng.2003.10.027
  3. Blowes, D.W., Reasdon, E.J., Jambor, J.L. and Cherry. J. (1991) The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochim. et Cosmochim. Acta, v. 55, p. 965-978 https://doi.org/10.1016/0016-7037(91)90155-X
  4. Brady, K., Smith, M.W., Beam, R.L. and Cravotta C.A. (1990) Effectiveness of the use of alkaline materials at surface coal mines in preventing or abating acid mine drainage: Part 2. Mine site case studies. 1990 Minning and reclamation conference, West Virginia Univer., Morgantown, WV
  5. Byerly, D.W. (1996) Handling acid-producing material dusing construction. Environmental and Engineering Geoscience, v. 2, p. 49-57
  6. Chen Y., Li, Y., Cai, M., Belzile, N. and Dang. Z. (2006) Preventing oxidation of iron sulfide minerals by polyethylene polyamines. Minerals Engineering, v. 19, p. 19-27 https://doi.org/10.1016/j.mineng.2005.04.007
  7. Colmer, A.R., Temple, K.L. and Hinkle, M.E. (1950) An iron oxidizing bacterium from the acid drainage of some bitminous coal mines. J. Bacteriol, v. 59, p. 317-328
  8. Evangelou, V.P. (2001) Pyrite microencapsulation technologies: principles and potential field application. Ecological Engineering, v. 17, p. 165-178 https://doi.org/10.1016/S0925-8574(00)00156-7
  9. Evangelou, V.P., Seta, A.K. and Holt, A. (1998) Potential role of bicarbonate during pyrite oxidation. Environ. Sci. Technol., v. 32, p. 2084-2091 https://doi.org/10.1021/es970829m
  10. Floyd, M., Czerewko, M.A., Cripps, J.C. and Spears, D.A. (2003) Pyrite oxidation in lower lias clay at concrete highway structures affected by thaumasite, Glouceshire, UK. Cement and Concrete Research, v. 25, p. 1015-1024 https://doi.org/10.1016/S0958-9465(03)00125-2
  11. Healy, P.M. and Robertson, A.M. (1989) A case history of an acid generation abatement program for an abandoned copper mine. In: geotechnical aspects of tailings disposal and acid mine drainage. The Vancouver Geotechnical Society, BC, Canada
  12. Hedin, R.S., Nairn, R.W. and Kleinmann, R.L. (1994) Passive treatment of coal mine drainage. US Bureau of Mines. Information Circular 9389
  13. Golez, N.V. and Kyuma, K. (1997) Influence of pyrite oxidation and soil acidification on some essential nutrient elements. Aquacultural Engineering, v. 15, p. 107-124
  14. Hillwood, A.L., Horwitz, P., Appleyard, S., Barton, C. and Wajrak, M. (2006) Acid sulfate soil distribution and metals in groundwater: implications for human exposure through grown produce. Environ. Pollution., v. 143, p. 100-105 https://doi.org/10.1016/j.envpol.2005.11.014
  15. Jang, A. and Kim, I.S. (2000) Solidification and stabilization of Pb, Zn, Cd and Cu in tailing waste using cement and fly ash. Minerals Engineering, v. 13, p. 14-15
  16. Jennings, S.R., Dollhopf, D.J. and Inskeep, W.P. (2000) Acid production from sulfide minerals using hydrogen peroxide weathering. Applied Geochem., v. 15, p. 235-243 https://doi.org/10.1016/S0883-2927(99)00041-4
  17. Jennings, S.R. and Dollhopf, D.J. (1995) Acid-base account effectiveness for determination of mine waste potential acidity. J. of Hazardous Material, v. 41, p. 161-175 https://doi.org/10.1016/0304-3894(95)00003-D
  18. Jiang, C.L., Wang, X.H. and Parekh, B.K. (2000) Effect of sodium oleate on inhibiting pyrite oxidation. Int. J. Miner. Process, v. 58, p. 305-318 https://doi.org/10.1016/S0301-7516(99)00045-9
  19. Johnson, D.B. and Hallberg, K.B. (2005) Acid mine drainage remediation options: a review. Science of the Total Envirnment, v. 338, p. 3-14 https://doi.org/10.1016/j.scitotenv.2004.09.002
  20. Kalin, M., Wheeler, W.N. and Olaveson, M.M. (2006) Response of phytoplankton to ecological engineering remediation of a Canadian shield lake affected by acid mine drainage. Ecological Engineering, v. 28, p. 296-310 https://doi.org/10.1016/j.ecoleng.2006.08.010
  21. Kargbo, D.M. and He, J. (2004) A simple accelerated rock weathering method to predict acid generation kinetics. Environ. Geology, v. 46, p. 775-783 https://doi.org/10.1007/s00254-004-1114-0
  22. Kirby, C.S., Thomas, H.M., Southam, G. and Donald, R. (1999) relative contributions of abiotic and biotic factors in Fe(II) oxidation in mine drainage. Applied Geochem., v. 14, p. 511-530 https://doi.org/10.1016/S0883-2927(98)00071-7
  23. Kock, D. and Schippers, A. (2006) Geomicrobiological investigation of two different mine waste tailings generating acid mine drainage. Hydrometallurgy, v. 83, p. 167-175 https://doi.org/10.1016/j.hydromet.2006.03.022
  24. Koryak, M., Shapiro, M.A. and Sykora, J.L. (1972) Riffle zoobenthos in streams receiving acid mine drainage. Water Research, v. 6, p. 1239-1274 https://doi.org/10.1016/0043-1354(72)90024-3
  25. Lan, Y., Huang, X. and Deng, B. (2002) Suppression of pyrite oxidation by iron 8-hydroxyquinoline. Archives of Environmental Contamination and Technology, v. 43, p. 168-174 https://doi.org/10.1007/s00244-002-1178-3
  26. Lee, G.H., Kim, J.G., Lee, J.S., Chon, C.M., Park, S.G., Kim, T.H., Ko, G.S. and Kim, T.K. (2005) Generation characteristics and prediction of acid rock drainage(ARD) of cut slope. Econ. Environ. Geol., v. 38, p. 91-99
  27. Lee, H., Cody, R.D., Cody, A.M. and Spry, P.G. (2005) The formation and role of ettringite in Iowa highway concrete deterioration. Cement and Concrete Research, v. 35, p. 332-343 https://doi.org/10.1016/j.cemconres.2004.05.029
  28. Matlock, M.M., Howerton, B.S. and Atwood, D.A. (2003) Covalent coating of coal refuse to inhibit leaching. Advances in Environmental Research, v. 7, p. 495-501 https://doi.org/10.1016/S1093-0191(02)00019-9
  29. Muhrizal, S., Shamshuddin, J., Fauziah, I. and Husmi, M.A.H. (2006) Changes in iron-poor acid sulfate soil upon submergence. Geoderma, v. 131, p. 110-122 https://doi.org/10.1016/j.geoderma.2005.03.006
  30. National Institute of Agricultural Science and Technology. (2000) Taxonomical classification of Korean soils. NIAST, Suwon, Korea
  31. Nicholson, R.V., Gillham, R.W. and Reardon, E.J. (1990) Pyrite oxidation in carbonate-buffered solution: II. rate control by oxide coatings. Geochim. et Cosmochim. Acta, v. 54, p. 395-402 https://doi.org/10.1016/0016-7037(90)90328-I
  32. Nicholson, R.V., Gillham, R.W. and Reardon, E.J. (1988) Pyrite oxidation in carbonate-buffered solution: I. experimental kinetics. Geochim. et Cosmochim. Acta, v. 52, p. 1077-1085 https://doi.org/10.1016/0016-7037(88)90262-1
  33. Nicholson, R.V., Gillham, R.W., Cherry, J.A. and Reardon, E.J. (1989) Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barrier. Can. Geotech. J., v. 26, p. 1-8 https://doi.org/10.1139/t89-001
  34. Nordstrom, D.K. (1982) Aqueous pyrite oxidation and the subsequently formation of secondary minerals, In Hossner, L.R., J.A. Kittrick, and D.F. Fanning (eds), Acid sulphate weathering, SSSA, Madison, WI. p. 37-56
  35. Nyavor, K., Egiebor, N.O. and Fedrak, P.M. (1996) Suppression of microbial pyrite oxidation by fatty acid amine treatment. The Science of the Total Environment, v. 182, p. 75-83 https://doi.org/10.1016/0048-9697(95)05052-3
  36. Siddharth, S., Jamal, A., Dhar, B.B. and R. Shukla, (2002) Acid-base accounting: a geochemical tool for management of acid drainage in coal mines. Mine Water and the Environment, v. 21, p. 106-110 https://doi.org/10.1007/s102300200030
  37. Shamshuddin, J., Muhrizal, S., Fauziah, I. and Husni, M.H.A. (2004) Effects of adding organic materials to an acid sulfate soil on the growth pf cocoa (Theobroma cacao L.) seedlings. Science of the Total Environment, v. 323, p. 33-45 https://doi.org/10.1016/j.scitotenv.2003.10.003
  38. Sobek, A.A., Rastogi, V. and Bendetti, D.A. (1990) Prevention of water pollution problems in minning: the bactericide technology. Mine Water and the Environment, v. 9, p. 133-148 https://doi.org/10.1007/BF02503688
  39. Stum, W. and Morgan, J.J. (1995) Aquatic chemistry: Chemical equilibria and rates in natural waters, 3th edition. John Wiley and Sons Inc., New York
  40. Tagnit-Hamou, A., Saric-Coric, M. and Rivard, P. (2005) Internal deterioration of concrete by the oxidation of pyrrhotitic aggregates. Cement and Cocrete Research, v. 35, p. 99-107 https://doi.org/10.1016/j.cemconres.2004.06.030
  41. von Willert, F.J. and Stehouwer, R.C. (2003) Compost, limestone, and gypsum effect on calcium and aluminim transport in acid minespoil. Soil Sci. Soc. Am. J., v. 67, p. 778-786 https://doi.org/10.2136/sssaj2003.0778
  42. Zhang, Y.L. and Evangelou, V.P. (1998) Formation of ferric hydroxide-silica coatings on pyrite and its oxidation behavior. Soil Science, v. 163, p. 53-62 https://doi.org/10.1097/00010694-199801000-00008