References
- Characklis WG, Marshall KC. Biofilms. Wiley, New York, NY, USA. pp. 195-231 (1990)
- Beech lB. Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the art methods of study. Int. Biodeter. Biodegr. 53: 177-183 (2004) https://doi.org/10.1016/S0964-8305(03)00092-1
- Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci. Am. 238: 86-95 (1978) https://doi.org/10.1038/scientificamerican0178-86
- Hamilton WA. Sulphate reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 39: 195-217 (1985) https://doi.org/10.1146/annurev.mi.39.100185.001211
- Flemming HC. Biofouling and microbiologically influenced corrosion (MIC)-an economical and technical overview. pp. 5-14. In: Microbial Deterioration of Materials. Heitz E, Sand W, Flemming HC (eds). Springer, Heidelberg, Germany (1996)
- Austin JW, Bergeron G. Development of bacterial biofilms in dairy processing lines. J. Dairy Res. 62: 509-519 (1995) https://doi.org/10.1017/S0022029900031204
- Brackett RE. Shelf stability and safety of fresh produce as influenced by sanitation and disinfection. J. Food Protect. 55: 808-814 (1992) https://doi.org/10.4315/0362-028X-55.10.808
- Lindsay D, Geomaras I, von Holly A. Biofilms associated with poultry processing equipment. Microbios 86: 105-116 (1996)
- Suarez B, Ferreiros CM, Criado MT. Adherence of psychrotropic bacteria to dairy equipment surfaces. J. Dairy Res. 59: 381-388 (1992) https://doi.org/10.1017/S002202990003065X
- Gross RA, Gu JD, Eberiel DT, Nelson M, McCarthy SP. Cellulose acetate biodegradability in simulated aerobic composting and anaerobic bioreactor environments as well as by a bacteria isolate derived from compost. pp. 257-279. In: Biodegradable Polymers and Packaging. Ching C, Kaplan DL, Thomas EL (eds). Technomic, Lancaster, PA, USA (1993)
- Gu JD, Ford T, Mitchell R. Microbial deterioration of fiber reinforced composite polymeric materials. pp. 16-17. In: Corrosion/ 95 Research in Progress Symposium. March 27, Orlando, FL, USA. National Association of Corrosion Engineering, Houston, TX, USA (1995)
- Gu JD, Lu C, Thorp K, Crasto A, Mitchell R. Fibre-reinforced polymeric composite materials are susceptible to microbial degradation. J. Ind. Microbiol. Biot. 18: 364-369 (1997) https://doi.org/10.1038/sj.jim.2900401
- Sheehan E, McKenna J, Mulhall KJ, Marks P, McCormack D. Adhesion of Staphylococcus to orthepaedic metals, an in vivo study. J. Orthop. Res. 22: 39-43 (2004) https://doi.org/10.1016/S0736-0266(03)00152-9
- Demirer S, Gecim IE, Aydinuraz K, Ataoglu H, Yerdel MA, Kuterdem E. Affinity of Staphylococcus epidermis to various prosthetic graft materials. J. Surg. Res. 99: 70-74 (2001) https://doi.org/10.1006/jsre.2000.5981
- Buret A, Ward KH, Olson ME, Costerton JW. An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J. Biomed. Mater. Res. 25: 865-874 (2004) https://doi.org/10.1002/jbm.820250706
- Gu JD, Roman M, Esselman T, Mitchell R. The role of microbial biofilms in deterioration of space station candidate materials. Int. Biodeter. Biodegr. 41: 25-33 (1998) https://doi.org/10.1016/S0964-8305(98)80005-X
- Bal'a MFA, Jamilah lD, Marshall DL. Attachment of Aeromonas hydrophilia to stainless steel surface. Dairy Food Environ. Sanit. 18: 642-649 (1998)
- Wong H-C, Chung Y-C, Yu J-A. Attachment and inactivation of Vibrio parahaemolyticus on stainless steel and glass surface. Food Microbiol. 19: 341-350 (2002) https://doi.org/10.1006/fmic.2002.0478
- Wirtanen G, Salo S, Helander IM, Mattila-Sandhohn T. Microbiological methods for testing disinfectant efficacy on Pseudomonas biofilm. Colloid. Surface B 20: 37-50 (2001) https://doi.org/10.1016/S0927-7765(00)00173-9
- Hecker M, Engehnann S, Cordwell JS. Proteomics of Staphylococcus aureus-current state and future challenges. J. Chromatogr. B 787: 179-195 (2003) https://doi.org/10.1016/S1570-0232(02)00907-8
- Jay JM. Mordem Food Microbiology. 6th ed. Aspen Publishers, Gaithersburg, MD, USA. pp. 322-326 (2000)
- Sabin C, Mitchell EP, Pokoma M, Gautier C, Utille JP, Wimmerova M, Imberty A. Binding of different monosaccharides by lectin PAIlL from Pseudomonas aeruginosa: Thermodynamics data correlated with X-ray structures. FEBS Lett. 580: 982-987 (2006) https://doi.org/10.1016/j.febslet.2006.01.030
- Buys EM, Nortje GL, Jooste PJ, Von Holy A. Bacterial populations associated with bulk packaged beef supplemented with dietary vitamin E. Int. J. Food Microbiol. 56: 239-244 (2000) https://doi.org/10.1016/S0168-1605(00)00158-6
- Le Magrex-Debar E, Lemoine J, Gelle MP, Jacquelin LF, Choisy C. Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int. J. Food Microbiol. 55: 239-243 (2000) https://doi.org/10.1016/S0168-1605(00)00177-X
- Lomander A, Schreuders P, Russek-Cohen E, Ali L. Evaluation of chlorines, impact on biofilms on scratched stainless steel surfaces. Bioresource Technol. 94: 275-283 (2004) https://doi.org/10.1016/j.biortech.2004.01.004
- Dychdala GR. Chlorine and chlorine compounds. pp. 157-172. In: Disinfection, Sterilization, and Preservation. Block SS (ed). 3rd ed. Lea & Febiger, Philadelphia, PA, USA (1983)
- Ingraham A, Fleischer TM. Disinfectants in laboratory animal science: what are they and who says they work? Lab Animal 32: 36-40 (2003)
- Kausar T, Kwon JH, Kim HK. Comparative effect of gamma irradiation and fumigation on total phenol content and biological activities of different teas (Camellia sinessis). Food Sci. Biotechnol. 13: 672-675 (2004)
- Kwon JH. Effects of gamma irradiation and methyl bromide fumigation on the qualities of fresh chestnuts during storage. Food Sci. Biotechnol. 14: 181-184 (2005)
- Simmons A. Sterilization of Medical Devices (Business Briefing: Medical Device Manufacturing & Technology 2004). Touch Briefings, London, UK. pp. 45-46 (2004)
- APHA. Standard methods for the examination of water and wastewater. 18th ed. Method 4500-CIB. American Public Health Association, Washington, DC, USA (1992)
- SAS Institute, Inc. SAS User's Guide. Statistical Analysis System Institute, Cary, NC, USA (1990)
- Sommer P, Martin-Rouas C, Mettler E. Influence of the adherent population level on biofilm population, structure and resistance to chlorination. Food Microbiol. 16: 503-515 (1999) https://doi.org/10.1006/fmic.1999.0267
- Sinde E, Caballo J. Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber, and polytetrafluorethylene:the influence of free energy and the effect of commercial sanitizers. Food Microbiol. 17: 439-447 (2000) https://doi.org/10.1006/fmic.2000.0339
- Tsuji K. Low-dose cobalt 60 irradiation for reduction of microbial contamination in raw materials for animal health products. Food Technol.-Chicago 37: 48-54 (1983)
- Luppens SBI, Reji MW, van der Heijden RWL, Rombouts FM, Abee T. Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl. Environ. Microb. 68: 4194-4200 (2002) https://doi.org/10.1128/AEM.68.9.4194-4200.2002
- William I, Venables WA, Lloyd D, Paul F, Critchley I. The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology 143: 2407-2413 (1997) https://doi.org/10.1099/00221287-143-7-2407
- Somers EB, Schoeni JL, Wong ACL. Effect of trisodium phosphate on biofilm and planktonic cells of Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella typhimurium. Int. J. Food Microbiol. 22: 269-276 (1994) https://doi.org/10.1016/0168-1605(94)90178-3
- Niemira BA, Solomon EB. Sensitivity of planktonic and biofilm associated Salmonella spp. to ionizing radiation. Appl. Environ. Microb. 71: 2732-2736 (2005) https://doi.org/10.1128/AEM.71.5.2732-2736.2005
- Niemira BA. Irradiation of fresh and minimally processed fruits, vegetables, and juices. pp. 279-300. In: The Microbial Safety of Minimally Processed Foods. Novak JS, Sapers GM, Juneja VK (eds). CRC Press, Boca Raton, FL, USA (2003)
- Joseph B, Otta SK, Karunasagar I, Karunasagar I. Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int. J. Food Microbiol. 64: 367-372 (2001) https://doi.org/10.1016/S0168-1605(00)00466-9
- Davis D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Microbiol. 2: 114-122 (2003) https://doi.org/10.1038/nrd1008
- de Beer D, Srinivasan R, Stewart PS. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microb. 60: 4339-4344 (1994)
- James GA, Beaudette L, Costerton JW. Interspecies bacterial interactions in biofilms. J. Ind. Microbiol. Biot. 15: 257-262 (1995) https://doi.org/10.1007/BF01569978
- Gibson H, Taylor JH, Hall KE, Holah JT. Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. J. Appl. Microbiol. 87: 41-48 (1999) https://doi.org/10.1046/j.1365-2672.1999.00790.x