Comparison of Gamma Irradiation and Sodium Hypochlorite Treatments to Inactivate Staphylococcus aureus and Pseudomonas aeruginosa Biofilms on Stainless Steel Surfaces

  • Kim, Jang-Ho (Bio Technology Regional Innovation Center, Youngdong University) ;
  • Jo, Cheo-Run (Department of Animal Science and Technology Chungnam National University) ;
  • Rho, Yong-Taek (Bio Technology Regional Innovation Center, Youngdong University) ;
  • Lee, Chun-Bok (Department of Biology, Kyungsung University) ;
  • Byun, Myung-Woo (Radiation Food Science and Biotechnology Team, Advanced Radiation Technology Institute)
  • Published : 2007.04.30

Abstract

Biofilm formation on various surfaces is a well-known phenomenon and it has caused pollution problems, health and safety hazards, and substantial economic loss in many areas including the food industry. In the present study, Gamma irradiation at a dose of 2.0 kGy reduced the bacterial counts of Staphylococcus aureus and Pseudomonas aeruginosa suspensions by 6.7 and >6.5 log CFU/mL, respectively, and 30 ppm of sodium hypochlorite effectively reduced the counts of both bacterial suspensions to below the limit of detection ($<2\;log\;CFU/cm^2$). However, in bacterial biofilms attached to stainless steel, gamma irradiation at a dose of 10.0 kGy reduced the counts of S. aureus attached fur 1 hr and overnight by ${\geq}5.1\;and\;5.0\;log\;CFU/cm^2$, respectively. Gamma irradiation at a dose of 1.0 kGy reduced the counts of P. aeruginosa counts to below the limit of detection ($<2\;log\;CFU/cm^2$). On the contrary, S. aureus and P. aeruginosa cells attached to stainless steel chips were difficult to eliminate using sodium hypochlorite. Four hundred ppm of sodium hypochlorite reduced the counts of S. aureus and P. aeruginosa attached for 1 hr by 2.5 and $3.3\;log\;CFU/cm^2$, respectively.

Keywords

References

  1. Characklis WG, Marshall KC. Biofilms. Wiley, New York, NY, USA. pp. 195-231 (1990)
  2. Beech lB. Corrosion of technical materials in the presence of biofilms-current understanding and state-of-the art methods of study. Int. Biodeter. Biodegr. 53: 177-183 (2004) https://doi.org/10.1016/S0964-8305(03)00092-1
  3. Costerton JW, Geesey GG, Cheng KJ. How bacteria stick. Sci. Am. 238: 86-95 (1978) https://doi.org/10.1038/scientificamerican0178-86
  4. Hamilton WA. Sulphate reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 39: 195-217 (1985) https://doi.org/10.1146/annurev.mi.39.100185.001211
  5. Flemming HC. Biofouling and microbiologically influenced corrosion (MIC)-an economical and technical overview. pp. 5-14. In: Microbial Deterioration of Materials. Heitz E, Sand W, Flemming HC (eds). Springer, Heidelberg, Germany (1996)
  6. Austin JW, Bergeron G. Development of bacterial biofilms in dairy processing lines. J. Dairy Res. 62: 509-519 (1995) https://doi.org/10.1017/S0022029900031204
  7. Brackett RE. Shelf stability and safety of fresh produce as influenced by sanitation and disinfection. J. Food Protect. 55: 808-814 (1992) https://doi.org/10.4315/0362-028X-55.10.808
  8. Lindsay D, Geomaras I, von Holly A. Biofilms associated with poultry processing equipment. Microbios 86: 105-116 (1996)
  9. Suarez B, Ferreiros CM, Criado MT. Adherence of psychrotropic bacteria to dairy equipment surfaces. J. Dairy Res. 59: 381-388 (1992) https://doi.org/10.1017/S002202990003065X
  10. Gross RA, Gu JD, Eberiel DT, Nelson M, McCarthy SP. Cellulose acetate biodegradability in simulated aerobic composting and anaerobic bioreactor environments as well as by a bacteria isolate derived from compost. pp. 257-279. In: Biodegradable Polymers and Packaging. Ching C, Kaplan DL, Thomas EL (eds). Technomic, Lancaster, PA, USA (1993)
  11. Gu JD, Ford T, Mitchell R. Microbial deterioration of fiber reinforced composite polymeric materials. pp. 16-17. In: Corrosion/ 95 Research in Progress Symposium. March 27, Orlando, FL, USA. National Association of Corrosion Engineering, Houston, TX, USA (1995)
  12. Gu JD, Lu C, Thorp K, Crasto A, Mitchell R. Fibre-reinforced polymeric composite materials are susceptible to microbial degradation. J. Ind. Microbiol. Biot. 18: 364-369 (1997) https://doi.org/10.1038/sj.jim.2900401
  13. Sheehan E, McKenna J, Mulhall KJ, Marks P, McCormack D. Adhesion of Staphylococcus to orthepaedic metals, an in vivo study. J. Orthop. Res. 22: 39-43 (2004) https://doi.org/10.1016/S0736-0266(03)00152-9
  14. Demirer S, Gecim IE, Aydinuraz K, Ataoglu H, Yerdel MA, Kuterdem E. Affinity of Staphylococcus epidermis to various prosthetic graft materials. J. Surg. Res. 99: 70-74 (2001) https://doi.org/10.1006/jsre.2000.5981
  15. Buret A, Ward KH, Olson ME, Costerton JW. An in vivo model to study the pathobiology of infectious biofilms on biomaterial surfaces. J. Biomed. Mater. Res. 25: 865-874 (2004) https://doi.org/10.1002/jbm.820250706
  16. Gu JD, Roman M, Esselman T, Mitchell R. The role of microbial biofilms in deterioration of space station candidate materials. Int. Biodeter. Biodegr. 41: 25-33 (1998) https://doi.org/10.1016/S0964-8305(98)80005-X
  17. Bal'a MFA, Jamilah lD, Marshall DL. Attachment of Aeromonas hydrophilia to stainless steel surface. Dairy Food Environ. Sanit. 18: 642-649 (1998)
  18. Wong H-C, Chung Y-C, Yu J-A. Attachment and inactivation of Vibrio parahaemolyticus on stainless steel and glass surface. Food Microbiol. 19: 341-350 (2002) https://doi.org/10.1006/fmic.2002.0478
  19. Wirtanen G, Salo S, Helander IM, Mattila-Sandhohn T. Microbiological methods for testing disinfectant efficacy on Pseudomonas biofilm. Colloid. Surface B 20: 37-50 (2001) https://doi.org/10.1016/S0927-7765(00)00173-9
  20. Hecker M, Engehnann S, Cordwell JS. Proteomics of Staphylococcus aureus-current state and future challenges. J. Chromatogr. B 787: 179-195 (2003) https://doi.org/10.1016/S1570-0232(02)00907-8
  21. Jay JM. Mordem Food Microbiology. 6th ed. Aspen Publishers, Gaithersburg, MD, USA. pp. 322-326 (2000)
  22. Sabin C, Mitchell EP, Pokoma M, Gautier C, Utille JP, Wimmerova M, Imberty A. Binding of different monosaccharides by lectin PAIlL from Pseudomonas aeruginosa: Thermodynamics data correlated with X-ray structures. FEBS Lett. 580: 982-987 (2006) https://doi.org/10.1016/j.febslet.2006.01.030
  23. Buys EM, Nortje GL, Jooste PJ, Von Holy A. Bacterial populations associated with bulk packaged beef supplemented with dietary vitamin E. Int. J. Food Microbiol. 56: 239-244 (2000) https://doi.org/10.1016/S0168-1605(00)00158-6
  24. Le Magrex-Debar E, Lemoine J, Gelle MP, Jacquelin LF, Choisy C. Evaluation of biohazards in dehydrated biofilms on foodstuff packaging. Int. J. Food Microbiol. 55: 239-243 (2000) https://doi.org/10.1016/S0168-1605(00)00177-X
  25. Lomander A, Schreuders P, Russek-Cohen E, Ali L. Evaluation of chlorines, impact on biofilms on scratched stainless steel surfaces. Bioresource Technol. 94: 275-283 (2004) https://doi.org/10.1016/j.biortech.2004.01.004
  26. Dychdala GR. Chlorine and chlorine compounds. pp. 157-172. In: Disinfection, Sterilization, and Preservation. Block SS (ed). 3rd ed. Lea & Febiger, Philadelphia, PA, USA (1983)
  27. Ingraham A, Fleischer TM. Disinfectants in laboratory animal science: what are they and who says they work? Lab Animal 32: 36-40 (2003)
  28. Kausar T, Kwon JH, Kim HK. Comparative effect of gamma irradiation and fumigation on total phenol content and biological activities of different teas (Camellia sinessis). Food Sci. Biotechnol. 13: 672-675 (2004)
  29. Kwon JH. Effects of gamma irradiation and methyl bromide fumigation on the qualities of fresh chestnuts during storage. Food Sci. Biotechnol. 14: 181-184 (2005)
  30. Simmons A. Sterilization of Medical Devices (Business Briefing: Medical Device Manufacturing & Technology 2004). Touch Briefings, London, UK. pp. 45-46 (2004)
  31. APHA. Standard methods for the examination of water and wastewater. 18th ed. Method 4500-CIB. American Public Health Association, Washington, DC, USA (1992)
  32. SAS Institute, Inc. SAS User's Guide. Statistical Analysis System Institute, Cary, NC, USA (1990)
  33. Sommer P, Martin-Rouas C, Mettler E. Influence of the adherent population level on biofilm population, structure and resistance to chlorination. Food Microbiol. 16: 503-515 (1999) https://doi.org/10.1006/fmic.1999.0267
  34. Sinde E, Caballo J. Attachment of Salmonella spp. and Listeria monocytogenes to stainless steel, rubber, and polytetrafluorethylene:the influence of free energy and the effect of commercial sanitizers. Food Microbiol. 17: 439-447 (2000) https://doi.org/10.1006/fmic.2000.0339
  35. Tsuji K. Low-dose cobalt 60 irradiation for reduction of microbial contamination in raw materials for animal health products. Food Technol.-Chicago 37: 48-54 (1983)
  36. Luppens SBI, Reji MW, van der Heijden RWL, Rombouts FM, Abee T. Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl. Environ. Microb. 68: 4194-4200 (2002) https://doi.org/10.1128/AEM.68.9.4194-4200.2002
  37. William I, Venables WA, Lloyd D, Paul F, Critchley I. The effects of adherence to silicone surfaces on antibiotic susceptibility in Staphylococcus aureus. Microbiology 143: 2407-2413 (1997) https://doi.org/10.1099/00221287-143-7-2407
  38. Somers EB, Schoeni JL, Wong ACL. Effect of trisodium phosphate on biofilm and planktonic cells of Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella typhimurium. Int. J. Food Microbiol. 22: 269-276 (1994) https://doi.org/10.1016/0168-1605(94)90178-3
  39. Niemira BA, Solomon EB. Sensitivity of planktonic and biofilm associated Salmonella spp. to ionizing radiation. Appl. Environ. Microb. 71: 2732-2736 (2005) https://doi.org/10.1128/AEM.71.5.2732-2736.2005
  40. Niemira BA. Irradiation of fresh and minimally processed fruits, vegetables, and juices. pp. 279-300. In: The Microbial Safety of Minimally Processed Foods. Novak JS, Sapers GM, Juneja VK (eds). CRC Press, Boca Raton, FL, USA (2003)
  41. Joseph B, Otta SK, Karunasagar I, Karunasagar I. Biofilm formation by Salmonella spp. on food contact surfaces and their sensitivity to sanitizers. Int. J. Food Microbiol. 64: 367-372 (2001) https://doi.org/10.1016/S0168-1605(00)00466-9
  42. Davis D. Understanding biofilm resistance to antibacterial agents. Nat. Rev. Microbiol. 2: 114-122 (2003) https://doi.org/10.1038/nrd1008
  43. de Beer D, Srinivasan R, Stewart PS. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microb. 60: 4339-4344 (1994)
  44. James GA, Beaudette L, Costerton JW. Interspecies bacterial interactions in biofilms. J. Ind. Microbiol. Biot. 15: 257-262 (1995) https://doi.org/10.1007/BF01569978
  45. Gibson H, Taylor JH, Hall KE, Holah JT. Effectiveness of cleaning techniques used in the food industry in terms of the removal of bacterial biofilms. J. Appl. Microbiol. 87: 41-48 (1999) https://doi.org/10.1046/j.1365-2672.1999.00790.x