초록
허밍을 통한 유사 검색 질의가 주어질 때 효과적으로 음악 데이타베이스를 검색하는 시스템에 대한 연구는 다양한 방향으로 진행되어 왔다. 최근에는 음악 데이타베이스와 허밍 질의를 시계열 데이터로 변환하여 시계열 데이타의 유사 검색과 관련하여 제안되어 왔던 여러 가지 거리 척도(distance measure)나 인덱싱 기법등을 적용하여 효과적으로 질의를 처리하려는 시도가 계속 되고 있다. 허밍 질의의 특성을 고려하여 균일 스케일링(Uniform Scaling)과 동적 프로그래밍을 사용한 타임 워핑(Dynamic Time Warping)을 함께 고려한 스케일드 앤 워프트 매칭(Scaled and Warped Matching) 거리를 사용하여 효과적인 유사 검색을 하는 방법은 가장 최근 제시된 방법 중 하나이다. 본 논문에서는 허밍을 통한 유사 검색 시스템인 Humming BIRD(Humming Based sImilaR miDimusic retrieval system)를 제안하고 구현하였다. 슬라이딩 윈도우를 사용하여 음악의 임의의 부분에 대한 허밍 질의를 처리할 수 있도록 하였으며 더 효율적으로 검색하기 위해 이전의 균일 스케일링을 변형하여 중심을 일치시킨(center-aligned) 균일 스케일링을 제안하고 이와 타임 워핑을 결합한 형태의 스케일드 앤워프트 매칭을 제안하였다. 이 거리의 좀 더 타이트한 하한을 계산하는 하계 함수를 사용하여 탐색 공간(search space)을 효과적으로 줄여 더 빠르고 효과적인 유사 검색을 가능하도록 하였다. 마지막으로 실험을 통해 개선된 스케일드 앤 워프트 매칭이 이전에 비해 같은 검객 결과를 얻으면서도 효과적으로 검색함을 탐색 공간을 줄이는 가지치기 성능을 비교함으로써 보였다.
Database community focuses on the similar music retrieval systems for music database when a humming query is given. One of the approaches is converting the midi data to time series, building their indices and performing the similarity search on them. Queries based on humming can be transformed to time series by using the known pitch detection algorithms. The recently suggested algorithm, scaled and warped matching, is based on dynamic time warping and uniform scaling. This paper proposes Humming BIRD(Humming Based sImilaR mini music retrieval system) using sliding window and center-aligned scaled and warped matching. Center-aligned scaled and warped matching is a mixed distance measure of center-aligned uniform scaling and time warping. The newly proposed measure gives tighter lower bound than previous ones which results in reduced search space. The empirical results show the superiority of this algorithm comparing the pruning power while it returns the same results.