Imaging of Lung Metastasis Tumor Mouse Model using $[^{18}F]FDG$ Small Animal PET and CT

$[^{18}F]FDG$ 소동물 PET과 CT를 이용한 폐 전이 종양 마우스 모델의 영상화

  • Kim, June-Youp (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Woo, Sang-Keun (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Lee, Tae-Sup (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Kim, Kyeong-Min (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Kang, Joo-Hyun (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Woo, Kwang-Sun (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Chung, Wee-Sup (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Jung, Jae-Ho (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Cheon, Gi-Jeong (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Choi, Chang-Woon (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS)) ;
  • Lim, Sang-Moo (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences (KIRAMS))
  • 김준엽 (원자력의학원 핵의학연구실) ;
  • 우상근 (원자력의학원 핵의학연구실) ;
  • 이태섭 (원자력의학원 핵의학연구실) ;
  • 김경민 (원자력의학원 핵의학연구실) ;
  • 강주현 (원자력의학원 핵의학연구실) ;
  • 우광선 (원자력의학원 핵의학연구실) ;
  • 정위섭 (원자력의학원 핵의학연구실) ;
  • 정재호 (원자력의학원 핵의학연구실) ;
  • 천기정 (원자력의학원 핵의학연구실) ;
  • 최창운 (원자력의학원 핵의학연구실) ;
  • 임상무 (원자력의학원 핵의학연구실)
  • Published : 2007.02.28

Abstract

Purpose: The purpose of this study is to image metastaic lung melanoma model with optimal pre-conditions for animal handling by using $[^{18}F]FDG$ small animal PET and clinical CT. Materials and Methods: The pre-conditions for lung region tumor imaging were 16-22 h fasting and warming temperature at $30^{\circ}C$. Small animal PET image was obtained at 60 min postinjection of 7.4 MBq $[^{18}F]FDG$ and compared pattern of $[^{18}F]FDG$ uptake and glucose standard uptake value (SUVG) of lung region between Ketamine/Xylazine (Ke/Xy) and Isoflurane (Iso) anesthetized group in normal mice. Metastasis tumor mouse model to lung was established by intravenous injection of B16-F10 cells in C57BL/6 mice. In lung metastasis tumor model, $[^{18}F]FDG$ image was obtained and fused with anatomical clinical CT image. Results: Average blood glucose concentration in normal mice were $128.0{\pm}23.87$ and $86.0{\pm}21.65\;mg/dL$ in Ke/Xy group and Iso group, respectively. Ke/Xy group showed 1.5 fold higher blood glucose concentration than Iso group. Lung to Background ratio (L/B) in SUVG image was $8.6{\pm}0.48$ and $12.1{\pm}0.63$ in Ke/Xy group and Iso group, respectively. In tumor detection in lung region, $[^{18}F]FDG$ image of Iso group was better than that of Ke/Xy group, because of high L/B ratio. Metastatic tumor location in $[^{18}F]FDG$ small animal PET image was confirmed by fusion image using clinical CT. Conclusion: Tumor imaging in small animal lung region with $[^{18}F]FDG$ small animal PET should be considered pre-conditions which fasting, warming and an anesthesia during $[^{18}F]FDG$ uptake. Fused imaging with small animal PET and CT image could be useful for the detection of metastatic tumor in lung region.

목적: 이 연구에서는 폐 전이 종양을 영상화하기 위하여 흑색종의 폐 전이 종양 마우스 모델을 제작하고 영상 획득 전처리 조건을 개선하여 폐 전이 종양의 $[^{18}F]FDG$ 소동물 PET 영상을 획득하고자 하였으며, 임상 CT를 이용하여 전이 종양의 해부학적 위치를 확인하고자 하였다. 대상 및 방법: 정상 마우스의 $[^{18}F]$FDG 영상 획득 전 조건은 $16{\sim}22$시간 금식 하고 $30^{\circ}C$의 온도를 유지하며 $[^{18}F]FDG$ (7.4 MBq) 정맥 주사 후 서로 다른 마취제(Ketamine/Xylazine, Ke/Xy과 Isoflurane, Iso)로 $[^{18}F]FDG$ 섭취 60분 동안 유지한 후 20분간 $[^{18}F]FDG$ 소동물 PET 영상을 획득하였다. 혈중 포도당 농도를 보정한 포도당 표준 섭취 계수 영상을 이용하여 관심영역 대 배경비(lung to background ratio, L/B)를 구하여 평가하였다. C57BL/6 마우스에 B16-F10 세포를 정맥내 주사하여 제작한 폐전이 종양 마우스 모델은 정상 마우스의 영상 획득 조건과 동일한 조건에서 $[^{18}F]FDG$ 소동물 PET 영상을 획득하였으며, 임상 CT를 이용하여 획득된 해부학적 영상으로 폐 부위의 종양 위치를 확인하였다. 결과: 정상 마우스의 평균 혈중 포도당 농도는 Ke/Xy으로 마취한 군에서 $128.0{\pm}23.87\;mg/dL$이었으며 Iso으로 마취한 군에서는 $86.0{\pm}21.65\;mg/dL$로, Ke/Xy으로 마취한 군이 Iso로 마취한 군 보다 1.5 배 높은 혈중 포도당 농도를 나타내었다. 포도당 표준 섭취 계수 영상에서의 L/B는 Ke/Xy으로 마취한 군에서 $8.6{\pm}0.48$ 이었으며 Iso으로 마취한 군에서는 $12.1{\pm}0.63$로, Iso로 마취한 군이 Ke/Xy으로 마취한 군 보다 주변 정상조직과의 대조도가 높은 경향을 보였다. 폐 전이 종양 마우스에서는 Iso로 마취한 군이 Ke/Xy으로 마취한 군의 $[^{18}F]FDG$ 소동물 PET 영상보다 주변 조직의 $[^{18}F]FDG$ 섭취가 낮았다. 또한 해부학적 종양의 위치를 확인하기 위하여 임상 CT 영상과 융합한 결과 폐 전이 종양이 폐 부위에 위치함을 확인하였다. 결론: 마우스와 같은 소동물에서의 폐 부위 종양을 $[^{18}F]FDG$로 영상화하는데 있어서 금식, 온도유지, $[^{18}F]FDG$ 섭취 시간 동안의 마취제 조건 등을 고려하여야 하며, $[^{18}F]FDG$ 소동물 PET과 CT 영상의 융합은 폐 부위의 전이 종양을 확인하는데 유용할 것으로 기대된다.

Keywords

References

  1. Devita VT, Hellman S, Rosenberg SA. Cancer principles and practice of oncology. 5th ed. New York: Lippincott-Raven; 1997. p. 674-9
  2. Waber S, Bauer A. Small animal PET: aspects of performance assessment. Eur J Nucl Med Mol Imaging 2004;31:1545-55 https://doi.org/10.1007/s00259-004-1683-x
  3. Knoess C, Siegel S, Smith A, Newport D, Richerzhagen N, Winkeler A, et al. Performance evaluation of the microPET R4 PET scanner for rodents. Eur J Nucl Med Mol Imaging 2003;30: 737-47 https://doi.org/10.1007/s00259-002-1052-6
  4. Weber G. Enzymology of cancer cells (first of two parts). N Engl J Med 1997;296::486-92 https://doi.org/10.1056/NEJM197703032960905
  5. Som P, Atkins HL., Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, et al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose(F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 1980;21:670-5
  6. Strauss LG, Conti PS. The applications of PET in clinical oncology. J Nucl Med 1991:32:623-48
  7. Wahl RL, Hutchins GD, Buchsbaum DJ, Liebert M, Grossman HB, Fisher S. $^{18}F$-2-deoxy-2-fluoro-D-glucose uptake into human tumor xenografts. Cancer 1991;67:1554-50
  8. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics. CA Cancer J Clin 2005;55:10-30 https://doi.org/10.3322/canjclin.55.1.10
  9. Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC, et al. Temporal progression of metastasis in lung: Cell survival, dormancy, and location dependence of metastatic ineffiency Cancer Res 2000;60:2541-6
  10. Vantyghem SA, Postenka CO, Chambers AF. Estrous cycle influences organ-specific metastasis of B16F10 melanoma cells. Cancer Res 2003;63:4763-5
  11. Yang M, Jiang P, An Z, Baranov E, Li L, Hasegawa S, et al. Genetically fluorescent melanoma bone and organ metastasis models. Clin Cancer Res 1999;5:3549-59
  12. Yang M, Baranov E, Jiang P, Sun FX, Li XM, Li L, et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci USA 2000;97:1206-11 https://doi.org/10.1073/pnas.97.3.1206
  13. Moore A, Sergeyev N, Bredow S, Weissleder R. A model system to quantitate tumor burden in locoregional lymph nodes during cancer spread. Invasion Metastasis 1998;18:192-7 https://doi.org/10.1159/000024512
  14. Wunderbaldinger P, Josephson L, Bremer C, Moore A, Weissleder R. Detection of lymph node metastases by contrast enhanced MRI in experimental model. Magn Reson Med 2002;47:292-7 https://doi.org/10.1002/mrm.10068
  15. Winkelmann CT, Figueroa SD, Rold TL, Volkert WA, Hoffman TJ. Microimaging characterization of a B16-F10 melanoma metastasis mouse model. Mol Imaging 2006;5:105-14
  16. Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, et al. Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 2006;47:999-1006
  17. Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. J Nucl Med 2004;45:784-8
  18. Brooks RA, Di Chiro G. Theory of image reconstruction in computed tomography. Radiology 1975;117:561-72 https://doi.org/10.1148/117.3.561
  19. Arguello F, Baggs RB, Frantz CN. A murine model of expermental metastasis to bone and bone marrow. Cancer Res 1998;48:6876-81
  20. Fidler IJ. Therapy of spontaneous metastases by intravenous injection of liposomes containing lymphokines. Science 1980;208: 1469-71 https://doi.org/10.1126/science.7384789
  21. Torizuka T, Clavo AC, Wahl RL. Effect of hyperglycemia on in vitro tumor uptake of tritiated FDG, thymidine, L-methionine and L-leucine. J Nucl Med 1997;38:382-6
  22. Langen KJ, Braun U, Rota Kops E. Herzog H, Kuwert T, Nebeling B, et al. The influence of plasma glucose levels on fluorine-18-fluorodeoxyglucose uptake in bronchial carcinomas. J Nucl Med 1993;34:355-9
  23. Wahl RL, Henry CA, Ethier SP. Serum glucose: effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-D-glucose in rodents with mammary carcinoma. Radiology 1992; 183:643-7 https://doi.org/10.1148/radiology.183.3.1584912
  24. Gordon C. Temperature Regulation in Laboratory Rodents. New York: NY; 1993
  25. Lee KH, Ko BH, Paik JY, Jung KH, Choe YS, Choi Y, et al. Effects of anesthetic agents and fasting duration on 18F-FDG biodistribution and insulin levels in tumor-bearing mice. J Nucl Med 2005;46:1531-6
  26. Toyama H, Ichise M, Liow JS, Mines DC, Seneca NM, Modell KJ et al. Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 2004;31(2):251-6 https://doi.org/10.1016/S0969-8051(03)00124-0
  27. Kohro S, Hogan QH, Nakae Y, Yamakage M, Bosnjak ZJ. Anesthetic effects on mitochondrial ATP-sensitive K channel. Anesthesiology 2001;95:1435-40 https://doi.org/10.1097/00000542-200112000-00024
  28. Monteil J, Dutour A, Akla B, Chianea T, Le Brun V, Grossin L, et al. In vivo follow-up of rat tumor models with 2-deoxy-2-[F-18]fluoro-D-glucose/dual-head coincidence gamma camera imaging. Mol Imaging Biol 2005;7:220-8 https://doi.org/10.1007/s11307-005-4115-9