Assessment of Bone Metastasis using Nuclear Medicine Imaging in Breast Cancer : Comparison between PET/CT and Bone Scan

유방암 환자에서 골전이에 대한 핵의학적 평가

  • Cho, Dae-Hyoun (Department of Nuclear Medicine, Kyungpook National University Hospital, Kyungpook National University Medical School) ;
  • Ahn, Byeong-Cheol (Department of Nuclear Medicine, Kyungpook National University Hospital, Kyungpook National University Medical School) ;
  • Kang, Sung-Min (Department of Nuclear Medicine, Kyungpook National University Hospital, Kyungpook National University Medical School) ;
  • Seo, Ji-Hyoung (Department of Nuclear Medicine, Kyungpook National University Hospital, Kyungpook National University Medical School) ;
  • Bae, Jin-Ho (Department of Nuclear Medicine, Kyungpook National University Hospital, Kyungpook National University Medical School) ;
  • Lee, Sang-Woo (Department of Nuclear Medicine, Kyungpook National University Hospital, Kyungpook National University Medical School) ;
  • Jeong, Jin-Hyang (Department of Surgery, Kyungpook National University Hospital, Kyungpook National University Medical School) ;
  • Yoo, Jeong-Soo (Department of Nuclear Medicine, Kyungpook National University Hospital, Kyungpook National University Medical School) ;
  • Park, Ho-Young (Department of Surgery, Kyungpook National University Hospital, Kyungpook National University Medical School) ;
  • Lee, Jae-Tae (Department of Nuclear Medicine, Kyungpook National University Hospital, Kyungpook National University Medical School)
  • 조대현 (경북대학교 의과대학 핵의학교실) ;
  • 안병철 (경북대학교 의과대학 핵의학교실) ;
  • 강성민 (경북대학교 의과대학 핵의학교실) ;
  • 서지형 (경북대학교 의과대학 핵의학교실) ;
  • 배진호 (경북대학교 의과대학 핵의학교실) ;
  • 이상우 (경북대학교 의과대학 핵의학교실) ;
  • 정진향 (경북대학교 의과대학 외과학교실) ;
  • 유정수 (경북대학교 의과대학 핵의학교실) ;
  • 박호용 (경북대학교 의과대학 외과학교실) ;
  • 이재태 (경북대학교 의과대학 핵의학교실)
  • Published : 2007.02.28

Abstract

Purpose: Bone metastasis in breast cancer patients are usually assessed by conventional Tc-99m methylene diphosphonate whole-body bone scan, which has a high sensitivity but a poor specificity. However, positron emission tomography with $^{18}F-2-deoxyglucose$ (FDG-PET) can offer superior spatial resolution and improved specificity. FDG-PET/CT can offer more information to assess bone metastasis than PET alone, by giving a anatomical information of non-enhanced CT image. We attempted to evaluate the usefulness of FDG-PET/CT for detecting bone metastasis in breast cancer and to compare FDG-PET/CT results with bone scan findings. Materials and Methods: The study group comprised 157 women patients (range: $28{\sim}78$ years old, $mean{\pm}SD=49.5{\pm}8.5$) with biopsy-proven breast cancer who underwent bone scan and FDG-PET/CT within 1 week interval. The final diagnosis of bone metastasis was established by histopathological findings, radiological correlation, or clinical follow-up. Bone scan was acquired over 4 hours after administration of 740 MBq Tc-99m MDP. Bone scan image was interpreted as normal, low, intermediate or high probability for osseous metastasis. FDG PET/CT was performed after 6 hours fasting. 370 MBq F-18 FDG was administered intravenously 1 hour before imaging. PET data was obtained by 3D mode and CT data, used as transmission correction database, was acquired during shallow respiration. PET images were evaluated by visual interpretation, and quantification of FDG accumulation in bone lesion was performed by maximal SUV(SUVmax) and relative SUV(SUVrel). Results: Six patients(4.4%) showed metastatic bone lesions. Four(66.6%) of 6 patients with osseous metastasis was detected by bone scan and all 6 patients(100%) were detected by PET/CT. A total of 135 bone lesions found on either FDG-PET or bone scan were consist of 108 osseous metastatic lesion and 27 benign bone lesions. Osseous metastatic lesion had higher SUVmax and SUVrel compared to benign bone lesion($4.79{\pm}3.32$ vs $1.45{\pm}0.44$, p=0.000, $3.08{\pm}2.85$ vs $0.30{\pm}0.43$, p=0.000). Among 108 osseous metastatic lesions, 76 lesions showed as abnormal uptake on bone scan, and 76 lesions also showed as increased FDG uptake on PET/CT scan. There was good agreement between FDG uptake and abnormal bone scan finding (Kendall tau-b : 0.689, p=0.000). Lesion showed increased bone tracer uptake had higher SUVmax and SUVrel compared to lesion showed no abnormal bone scan finding ($6.03{\pm}3.12$ vs $1.09{\pm}1.49$, p=0.000, $4.76{\pm}3.31$ vs $1.29{\pm}0.92$, p=0.000). The order of frequency of osseous metastatic site was vertebra, pelvis, rib, skull, sternum, scapula, femur, clavicle, and humerus. Metastatic lesion on skull had highest SUVmax and metastatic lesion on rib had highest SUVrel. Osteosclerotic metastatic lesion had lowest SUVmax and SUVrel. Conclusion: These results suggest that FDG-PET/CT is more sensitive to detect breast cancer patients with osseous metastasis. CT scan must be reviewed cautiously skeleton with bone window, because osteosclerotic metastatic lesion did not showed abnormal FDG accumulation frequently.

목적 : 유방암 환자에서 골전이는 Tc-99m MDP를 이용한 전신 골스캔이 주로 이용되며, 이 검사 기법은 높은 예민도를 나타내나 특이도가 낮다는 단점을 가진다. F-18 FDG를 이용한 PET 검사는 높은 해상도를 가지며 골스캔이 비하여 높은 분해능을 가지며 골전이 진단성능이 높다. PET에 CT 영상 기법이 도입된 F-18 FDG PET/CT는 PET 검사와 동시에 CT 영상정보를 제공함으로써, 유방암환자의 골전이 평가에 PET 보다 더 높은 검사의 정확도를 나타낼 수 있다. 본 연구는 유방암 환자에서 골 전이여부를 평가하는데, F-18 FDG PET/CT와 골스캔의 진단성능과 유용성을 비교해 보았다. 대상 및 방법 : 유방암으로 진단받은 후 병기 판정위하여 혹은 유방암 수술후 재발 평가를 위하여, Tc-99m MDP 골스캔과 F-18 FDG PET/CT를 1주일 간격이내에 시행한 여성환자 157명 ($28{\sim}78$세, 평균연령=$49.5{\pm}8.5$세)을 대상으로 하였다. 골전이 병소의 최종진단은 조직학적검사, 방사선상학적 검사, 임상적 추적관찰을 이용하였다. 골스캔은 Tc-99m MDP를 740 MBq을 투여한 4시간 후에 평면감마카메라 영상을 얻었다. 골스캔 소견은 정상소견, 저확률, 중간확률, 고확률로 구분하였다. PET/CT 검사는 6시간 이상 금식 이후에 시행하였으며, F-18 FDG 370 MBq을 정맥주사를 시행한 후 1시간동안 안정을 취한 후 3D 방식으로 영상을 획득하였다. CT 촬영은 조용한 호흡 중에 시행되었고 감쇠보정에 이용하였다. 생리적인 섭취증가를 제외하고, 주위 골의 섭취에 비해 높은 섭취를 보이는 경우 이상섭취로 판단하였다. FDG 섭취정도의 정량화는 SUVmax와 SUVrel를 이용하였다. 결과: 대상환자 가운데 6명이(4.4%) 골전이 소견을 나타내었으며, 골스캔은 4명(66.6%)의 환자에서만 진단할 수 있었고, PET/CT는 6명 (100%) 모두를 진단할 수 있었다. 골스캔과 PET/CT에서 발견된 골병소의 수 135개이었으며, 양성병소가 27개, 전이병소가 108개였다. 골전이 병소는 양성 골병소에 비하여 높은 SUVmax 및 SUVrel을 나타내었다($4.79{\pm}3.32$ vs $1.45{\pm}0.44$, p=0.000, $3.08{\pm}2.85$ vs $0.30{\pm}0.43$, p=0.000). 108개의 골전이 병소 가운데 76개(70.4%)의 병소가 골스캔 상 이상섭취 소견을 나타내었으며, 동일한 76개(70.4%)의 병소가 FDG 섭취증가 소견을 나타내었다. 골병소부위의 골스캔상 이상섭취 유무와 PET상 섭취증가 유무는 유의한 일치도를 나타내었다(Kendall tau-b : 0.689, p=0.000). 골전이 병소 가운데 골스캔상 양성소견을 보인 병소는 그렇지 않은 병소에 비하여 높은 SUVmax 와 SUVrel을 나타내었다($6.03{\pm}3.12$ vs $1.09{\pm}1.49$, p=0.000, $4.76{\pm}3.31$ vs $1.29{\pm}0.92$, p=0.000). 골전이 병소의 발생부위는 척추골이 가장 많았으며, 골반골, 늑골, 두개골, 흉골, 견갑골, 대퇴골, 쇄골, 상완골 순서였다. 두개골 전이병소에 SUVmax가 가장 높은 값을 나타내었으며, 늑골의 SUVrel가 가장 높은 값을 나타내었다. 경화성 골전이 병소가 다른 형태의 골전이 병소에 비하여 낮은 SUVmax와 SUVrel 값을 나타내었다. 결론: 유방암 환자의 골전이 평가시 골스캔에 비하여 F-18 FDG PET/CT의 진단적 예민도가 더 높게 나타났다. 경화성 골전이 병소는 FDG 이상섭취가 없는 경우가 많아 CT 소견의 면밀한 검토가 필요하다고 생각된다.

Keywords

References

  1. Goldhirisch A, Gelber RD, Castiglione M. Relapse of breast cancer after adjuvant treatment in premenopausal and perimenopausal women: patterns and prognoses. J Clin Oncol 1997;6:89-97
  2. Kamby K, Senegelov L. Pattern of dissemination and survival following isolated locoregional recurrence of breast cancer: a prospective study with more than 10 years of follow-up. Breast Cancer Res Treat 1997;45:181-92 https://doi.org/10.1023/A:1005845100512
  3. Martin TJ, Moseley JM. Mechanisms in the skeletal complications of breast cancer. Endocr Relat Cancer 2000;7:271-84 https://doi.org/10.1677/erc.0.0070271
  4. Maffioli L, Florimonte L, Pagani L, Butti I, Roca I. Current role of bone scan with phosphonates in the follow-up of breast cancer. Eur J Nucl Med Mol Imaging 2004;31(S1):S143-8 https://doi.org/10.1007/s00259-004-1537-6
  5. Hortobagyi GN, Theriault RL, Lipton A, Porter L, Blayney D, Sinoff C, Wheeler H, Simeone JF, Seaman JJ, Knight RD, Heffernan M, Mellars K, Reitsma DJ. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. J Clin Oncol 1998;16:2038-44 https://doi.org/10.1200/JCO.1998.16.6.2038
  6. Cook RJ, Major P. Methodology for treatment evaluation in patients with cancer metastatic to bone. J Natl Cancer Inst 2001;93:534-8 https://doi.org/10.1093/jnci/93.7.534
  7. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol 2004;22:2942-53 https://doi.org/10.1200/JCO.2004.08.181
  8. Langsteger W, Heinisch M, Fogelman I. The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 2006;36:73-92 https://doi.org/10.1053/j.semnuclmed.2005.09.002
  9. Aoki J, Inoue T, Tomiyoshi K, Shinozaki T, Watanabe H, Takagishi K, Endo K. Nuclear imaging of bone tumors: FDG-PET. Semin Musculoskelet Radiol 2001;5:183-7 https://doi.org/10.1055/s-2001-15678
  10. Malhotra P, Berman CG. Evaluation of bone metastases in lung cancer: Improved sensitivity and specificity of PET over bone scanning. Cancer Control 2002;9:259-60
  11. Yang SN, Liang JA, Lin FJ, Kao CH, Lin CC, Lee CC. Comparing whole body $^{18}F$-2-deoxyglucose positron emission tomography and technetium-99m methylene diphosphonate bone scan to detect bone metastases in patients with breast cancer. J Cancer Res Clin Oncol 2002;128:325-8 https://doi.org/10.1007/s00432-002-0342-5
  12. Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases. Semin Nucl Med 2005;35:135-42 https://doi.org/10.1053/j.semnuclmed.2004.11.005
  13. Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T, Nasu S, Suzuki Y, Yasuda S, Shohtsu A. Whole body PET for the evaluation of bony metastases in patients with breast cancer: Comparison with $^{99m}$Tc-MDP bone scintigraphy. Nucl Med Commun 2001;22:875-9 https://doi.org/10.1097/00006231-200108000-00005
  14. Townsend DW, Beyer T. A combined PET/CT scanner: The path to true image fusion. Br J Radiol 2002;75:S24-30 https://doi.org/10.1259/bjr.75.suppl_9.750024
  15. Finlay IG, Mason MD, Shelley M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet oncol 2005;6:392-400 https://doi.org/10.1016/S1470-2045(05)70206-0
  16. Pandit-Taskar N, Batraki M, Divgi CR. Radiopharmaceutical therapy for palliation of bone pain from osseous metastases. J Nucl Med 2004;45:1358-65
  17. Parfitt AM. Bone remodeling, normal and abnormal: A biological basis for the understanding of cancer-related bone disease and its treatment. Can J Oncol 1995;5(S1):1-10
  18. Raisz LG. Physiology and pathophysiology of bone remodeling. Clin Chem 1999;45:1353-8
  19. Morgan-Parkes JH. Metastases: mechanism, pathways, and cases. AJR 1995;164:1075-82 https://doi.org/10.2214/ajr.164.5.7717206
  20. O'Sullivan JM, Cook GJR. A review of the efficacy of bone scanning in prostate and breast cancer. Q J Nucl Med 2002;46: 152-9
  21. Coleman RE, Smith P, Rubens RD. Clinical course and prognostic factors following bone recurrence from breast cancer. Br J Cancer 1998;77:336-40 https://doi.org/10.1038/bjc.1998.52
  22. Hortobagyi GN. Bone metastases in breast cancer patients. Semin Oncol 1991;18:11-5
  23. Solomayer EF, Diel IJ, Meyberg GC, Gollan C, Bastert G. Metastatic breast cancer: Clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res Treat 2000;59:271-8 https://doi.org/10.1023/A:1006308619659
  24. Hortobagyi GN. Unmet needs in metastatic bone disease and its complications: Is progress possible? Semin Oncol 2001;28:1-3 https://doi.org/10.1053/sonc.2001.22541
  25. Lipton A. Bisphosphonates and metastatic breast carcinoma. Cancer 2003;97:848-53 https://doi.org/10.1002/cncr.11123
  26. Libshitz HI, Hortobagyi GN. Radiographic evaluation of therapeutic response in bony metastases of breast cancer. Skeletal Radiol 1981;7:159-5 https://doi.org/10.1007/BF00361858
  27. Pivot X, Asmar L, Hortobagyi GN, Theriault R, Pastorini F, Buzdar A. A retrospective study of first indicators of breast cancer recurrence. Oncology 2000;58:185-90 https://doi.org/10.1159/000012098
  28. Hortobagyi GN. Novel approaches to the management of bone metastases in patients with breast cancer. Semin Oncol 2002;29: 134-44 https://doi.org/10.1053/sonc.2002.34066
  29. Rubens RD. Bone metastases-the clinical problem. Eur J Cancer 1998;34:210-3 https://doi.org/10.1016/S0959-8049(97)10128-9
  30. Roodman GD. Biology of osteoclast activation in cancer. J Clin Oncol 2001;9:3562-71
  31. Theriault RL, Lipton A, Hortobagyi GN, Leff R, Gluck S, Stewart JF, Costello S, Kennedy I, Simeone J, Seaman JJ, Knight RD, Mellars K, Heffernan M, Reitsma DJ. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: A randomized, placebo- controlled trial: Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol 1999;17:846-54 https://doi.org/10.1200/JCO.1999.17.3.846
  32. Coleman RE. Management of bone metastases. Oncologist 2000;5:463-70 https://doi.org/10.1634/theoncologist.5-6-463
  33. LoRusso P. Analysis of skeletal-related events in breast cancer and response to therapy. Semin Oncol 2001;28:22-27
  34. Janjan N. Bone metastases: Approaches to management. Semin Oncol 2001;28:28-34
  35. Goris ML, Bretille J. Skeletal scintigraphy for the diagnosis of malignant metastatic disease to the bones. Radiother Oncol 1985;3:319-29 https://doi.org/10.1016/S0167-8140(85)80045-1
  36. Galasko CS, Doyle FH. The response to therapy of skeletal metastases from mammary cancer: Assessment by scintigraphy. Br J Surg 1972;59:85-8 https://doi.org/10.1002/bjs.1800590202
  37. Tryciecky EW, Gottschalk A, Ludema K. Oncologic imaging: Interactions of nuclear medicine with CT and MRI using the bone scan as a model. Semin Nucl Med 1997;27:142-51 https://doi.org/10.1016/S0001-2998(97)80044-X
  38. Coleman RE: Monitoring of bone metastases. Eur J Cancer 1998; 34:252-9 https://doi.org/10.1016/S0959-8049(97)10134-4
  39. Cook GJ, Fogelman I. The role of positron emission tomography in the management of bone metastases. Cancer 2000;88:2927-33 https://doi.org/10.1002/1097-0142(20000615)88:12+<2927::AID-CNCR8>3.0.CO;2-V
  40. Rybak LD, Rosenthal DI. Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med 200145:53-64
  41. Galasko CS. Skeletal metastases and mammary cancer. Ann R Coll Surg Engl 1972;50:3-28
  42. Vinholes J, Coleman R, Eastell R. Effects of bone metastases on bone metabolism: Implications for diagnosis, imaging and assessment of response to cancer treatment. Cancer Treat Rev 1996;22: 289-331 https://doi.org/10.1016/S0305-7372(96)90021-3
  43. Edelstyn GA, Gillespie PJ, Grebbell FS: The radiological demonstration of osseous metastases: Experimental observations. Clin Radiol 1967;18:158-62 https://doi.org/10.1016/S0009-9260(67)80010-2
  44. Ahn BC. Radiopharmaceuticals for the therapy of metastatic bone pain. Korean J of Nuclear Medicine and Molecular imaging 2006; 40:82-9
  45. Hortobagyi GN, Libshitz HI, Seabold JE. Osseous metastases of breast cancer. Clinical, biochemical, radiographic, and scintigraphic evaluation of response to therapy. Cancer 1984;53:577-82 https://doi.org/10.1002/1097-0142(19840201)53:3<577::AID-CNCR2820530335>3.0.CO;2-U
  46. Corcoran RJ, Thrall JH, Kyle RW, Kaminski RJ, Johnson MC. Solitary abnormalities in bone scans of patients with extraosseous malignancies. Radiology 1976;121:663-7 https://doi.org/10.1148/121.3.663
  47. Tubiana-Hulin M. Incidence, prevalence and distribution of bone metastases. Bone 1991;12:S9-10 https://doi.org/10.1016/8756-3282(91)90059-R
  48. Rosenthal DI. Radiologic diagnosis of bone metastases. Cancer 1997;80:1595-607 https://doi.org/10.1002/(SICI)1097-0142(19971015)80:8+<1595::AID-CNCR10>3.0.CO;2-V
  49. Galasko CS, Doyle FH. The detection of skeletal metastases from mammary cancer: A regional comparison between radiology and scintigraphy. Clin Radiol 1972;23:295-7 https://doi.org/10.1016/S0009-9260(72)80051-5
  50. Lee YT. Bone scanning in patients with early breast carcinoma: Should it be a routine staging procedure? Cancer 1981;47:486-95 https://doi.org/10.1002/1097-0142(19810201)47:3<486::AID-CNCR2820470311>3.0.CO;2-U
  51. Coleman RE, Rubens RD, Fogelman I. Reappraisal of the baseline bone scan in breast cancer. J Nucl Med 1988;29:1045-9
  52. Dershaw DD, Osborne M. Imaging techniques in breast cancer. Semin Surg Oncol 1989;5:82-93 https://doi.org/10.1002/ssu.2980050204
  53. Loeffler RK, DiSimone RN, Howland WJ. Limitations of bone scanning in clinical oncology. JAMA 1975;234:1228-32 https://doi.org/10.1001/jama.234.12.1228
  54. Theriault RL, Hortobagyi GN. Bone metastasis in breast cancer. Anticancer Drugs 1992;3:455-62 https://doi.org/10.1097/00001813-199210000-00002
  55. Place of Whole-Body PET FDG for the Diagnosis of Distant Recurrence of Breast Cancer. Clin Positron Imaging 2000;3:45-9 https://doi.org/10.1016/S1095-0397(00)00042-X
  56. O'Mara R. Skeletal scanning in neoplastic disease. Cancer 1976;37:480-6 https://doi.org/10.1002/1097-0142(197601)37:1+<480::AID-CNCR2820370713>3.0.CO;2-2
  57. Horiuchi-Suzuki K, Saji H, Ohta H: What is the source of the skeletal affinity of $^{99m}TC$-V-DMSA? Eur J Nucl Med Mol Imaging 2004;31:1675-6 https://doi.org/10.1007/s00259-004-1651-5
  58. Jocobson AF. (1996) Bone scanning in metastatic disease. In: Collier BD Jr, Fogelman I, Rosenthall L (eds) skeletal nuclear medicine. Mosby, St. Louis, pp 87.123
  59. Resnick D (1996) Skeletal metastases. In: Resnick D (ed) Bone and joint imaging. W.B. Saunders, Philadelphia, pp 1076.1091
  60. Kosuda S, Kaji T, Yokoyama H, Yokokawa T, Katayama M, Iriye T, Uematsu M, Kusano S. Does bone SPECT actually have lower sensitivity for detecting vertebral metastasis than MRI? J Nucl Med 1996;37:975-8
  61. Roland J, van den Weyngaert D, Krug B, Brans B, Scalliet P, Vandevivere J. Metastases seen on SPECT imaging despite a normal planar bone scan. Clin Nucl Med 1995;20:1052-4 https://doi.org/10.1097/00003072-199512000-00002
  62. Sedonja I, Budihna NV. The benefit of SPECT when added to planar scintigraphy in patients with bone metastases in the spine. Clin Nucl Med 1999;24:407-13 https://doi.org/10.1097/00003072-199906000-00006
  63. Krasnow AZ, Hellman RS, Timins ME, Collier BD, Anderson T, Isitman AT. Diagnostic bone scanning in oncology. Semin Nucl Med 1997;27:107-41 https://doi.org/10.1016/S0001-2998(97)80043-8
  64. Cook GJ, Fogelman I. Skeletal metastases from breast cancer: Imaging with nuclear medicine. Semin Nucl Med 1999;29:69-79 https://doi.org/10.1016/S0001-2998(99)80031-2
  65. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I. Detection of bone metastases in breast cancer by 18FDG PET: Differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 1998;16:3375-9 https://doi.org/10.1200/JCO.1998.16.10.3375
  66. Coleman RE, Seaman JJ. The role of zoledronic acid in cancer: Clinical studies in the treatment and prevention of bone metastases. Semin Oncol 2001;28:11-6 https://doi.org/10.1053/sonc.2001.24369
  67. Schulte M, Brecht-Krauss D, Werner M, Hartwig E, Sarkar MR, Keppler P, Kotzerke J, Guhlmann A, Delling G, Reske SN. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 1999;40:1637-43
  68. Franzius C, Bielack S, Flege S, Sciuk J, Jurgens H, Schober O. Prognostic significance of 18F-FDG and 99mTc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 2002;43: 1012-7
  69. Gulenchyn KY, Papoff W. Technetium-99m MDP scintigraphy: an insensitive tool for the detection of bone marrow metastases. Clin Nucl Med 1987;12:45-6 https://doi.org/10.1097/00003072-198701000-00011
  70. Moog F, Bangerter M, Kotzerke J, Guhlmann A, Frickhofen N, Reske SN. $^{18}F$-Fluorodeoxyglucose-positron emission tomography as a new approach to detect lymphomatousbone marrow. J Clin Oncol 1998;16:603-9 https://doi.org/10.1200/JCO.1998.16.2.603
  71. Even-Sapir E, Metser U, Flusser G, Zuriel L, Kollender Y, Lerman H, Lievshitz G, Ron I, Mishani E. Assessment of malignant skeletal disease: Initial experience with $^{18}F$-fluoride PET/CT and Comparison between $^{18}F$-fluoride PET and $^{18}F$-fluoride PET/CT. J Nucl Med 2004;45:272-8
  72. Antoch G, Freudenberg LS, Beyer T, Bockisch A, Debatin JF. To enhance or not to enhance? $^{18}F$-FDG and CT contrast agents in dual-modality $^{18}F$-FDG PET/CT. J Nucl Med 2004;45(S1):S56-65
  73. Kamel EM, Burger C, Buck A, von Schulthess GK, Goerres GW. Impact of metallic dental implants on CT-based attenuation correction in a combined PET/CT scanner. Eur Radiol 2003;13: 724-8 https://doi.org/10.1007/s00330-002-1564-2
  74. Bockisch A, Beyer T, Antoch G, Freudenberg LS, Kuhl H, Debatin JF, Muller SP. Positron emission tomography/computed tomographyimaging protocols, artifacts, and pitfalls. Mol Imaging Biol 2004; 6:188-99 https://doi.org/10.1016/j.mibio.2004.04.006
  75. Fogelman I, Cook G, Israel O, Van der Wall H. Positron emission tomography and bone metastases. Semin Nucl Med 2005;35: 135-42 https://doi.org/10.1053/j.semnuclmed.2004.11.005
  76. Cherry SR. The 2006 Henry N. Wagner Lecture: Of mice and men (and positrons)-advances in PET imaging technology. J Nucl Med 2006;47:1735-45
  77. Fanti S, Franchi R, Battista G, Monetti N, Canini R. PET and PET-CT. State of the art and future prospects. Radiol Med 2005;110:1-15