참고문헌
- Fahn S, Przedborski S. Parkinsonism. In: Rowland LP, editor. Merritt's Neurology. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2000, p679-693
- Poewe W, Wenning G. The differential diagnosis of Parkinson's disease. Eur J Neurol 2002;9(S3):23-30
- Bosman T, Van Laere K, Santens P. Anatomically standardised (99m)Tc-ECD brain perfusion SPET allows accurate differentiation between healthy volunteers, multiple system atrophy and idiopathic Parkinson's disease. Eur J Nucl Med Mol Imaging 2003;30:16-24 https://doi.org/10.1007/s00259-002-1009-9
- Brooks DJ. Morphological and functional imaging studies on the diagnosis and progression of Parkinson's disease. J Neuro 2000;247 Suppl 2:II11-8
- Yekhlef F, Ballan G, Macia F, Delmer O, Sourgen C, Tison F. Routine MRI for the differential diagnosis of Parkinson's disease, MSA, PSP, and CBD. J Neural Transm 2003;110:151-69 https://doi.org/10.1007/s00702-002-0785-5
- Asato R, Akiguchi I, Masunaga S, Hashimoto N. Magnetic resonance imaging distinguishes progressive supranuclear palsy from multiple system atrophy. J Neural Transm 2000;107:1427-36 https://doi.org/10.1007/s007020070006
- Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD. Differentiating multiple system atrophy from Parkinson's disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry 2002;73:517-23 https://doi.org/10.1136/jnnp.73.5.517
- Taniwaki T, Nakagawa M, Yamada T, Yoshida T, Ohyagi Y, Sasaki M, Kuwabara Y, Tobimatsu S, Kira J. Cerebral metabolic changes in early multiple system atrophy: a PET study. J Neurol Sc .2002;200:79-84 https://doi.org/10.1016/S0022-510X(02)00151-X
- Schwarz J, Kraft E, Vogl T, Arnold G, Tatsch K, Oertel WH. Relative quantification of signal on T2-weighted images in the basal ganglia: limited value in differential diagnosis of patients with parkinsonism. Neuroradiology 1999;41:124-8 https://doi.org/10.1007/s002340050716
- Schulz JB, Skalej M, Wedekind D, Luft AR, Abele M, Voigt K, Dichgans J, Klockgether T. Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson's syndrome from multiple system atrophy and progressive supranuclear palsy. Ann Neurol 1999;45:65-74 https://doi.org/10.1002/1531-8249(199901)45:1<65::AID-ART12>3.0.CO;2-1
- Feigin A, Antonini A, Fukuda M, De Notaris R, Benti R, Pezzoli G, Mentis MJ, Moeller JR, Eidelberg D. Tc-99m ethylene cysteinate dimer SPECT in the differential diagnosis of parkinsonism. Mov Disord 2002;17:1265-70 https://doi.org/10.1002/mds.10270
- Tzen KY, Lu CS, Yen TC, Wey SP, Ting G. Differential diagnosis of Parkinson's disease and vascular parkinsonism by (99m)Tc- TRODAT-1. J Nucl Med 2001:42:408-13
- Burn DJ, Sawle GV, Brooks DJ. Differential diagnosis of Parkinson's disease, multiple system atrophy, and Steele-Richardson- Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry 1994;57:278-84 https://doi.org/10.1136/jnnp.57.3.278
- Schrag A, Good CD, Miszkiel K, Morris HR, Mathias CJ, Lees AJ, Quinn NP. Differentiation of atypical parkinsonian syndromes with routine MRI. Neurology 2000;54:697-702 https://doi.org/10.1212/WNL.54.3.697
- Schrag A, Ben-Shlomo Y, Quinn NP. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 1999;354:1771-5 https://doi.org/10.1016/S0140-6736(99)04137-9
- Antonini A, Leenders KL, Vontobel P, Maguire RP, Missimer J, Psylla M, Gunther I. Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson's disease. Brain 1997;120:2187-95 https://doi.org/10.1093/brain/120.12.2187
- Varrone A, Marek KL, Jennings D, Innis RB, Seibyl JP. [(123)I]beta-CIT SPECT imaging demonstrates reduced density of striatal dopamine transporters in Parkinson's disease and multiple system atrophy. Mov Disord 2001;16:1023-32 https://doi.org/10.1002/mds.1256
- Kim YJ, Ichise M, Ballinger JR, Vines D, Erami SS, Tatschida T, Lang AE. Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord 2002;17:303-12 https://doi.org/10.1002/mds.10042
- Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Chaly T, Belakhlef A, Mandel F, Przedborski S, Fahn S. Early differential diagnosis of Parkinson's disease with 18Ffluorodeoxyglucose and positron emission tomography. Neurology 1995;45:1995-2004 https://doi.org/10.1212/WNL.45.11.1995
- Hosaka K, Ishii K, Sakamoto S, Mori T, Sasaki M, Hirono N, Mori E. Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration. J Neurol Sci 2002;199:67-71 https://doi.org/10.1016/S0022-510X(02)00102-8
- Magistretti PJ, Pellerin L, Rothman DL, Shulman RG. Energy on demand. Science 1999;283:496-7 https://doi.org/10.1126/science.283.5401.496
- Lang AE, Lozano AM. Parkinson's disease. First of two parts. New Engl J Med 1998;339:1044-51 https://doi.org/10.1056/NEJM199810083391506
- Lang AE, Lozano AM. Parkinson's disease. Second of two parts. New Engl J Med 1998;339:1130-43 https://doi.org/10.1056/NEJM199810153391607
- Mohr E, Mann UM, Miletich RS, Sampson M, Goldberg TE, Grimes JD, et al. Neuropsychological and glucose metabolic profiles in asymmetric Parkinson's disease. Can J Neurol Sci 1992;19:163-9
- Piert M, Koeppe RA, Giordani B, Minoshima S, Kuhl DE. Determination of regional rate constants from dynamic FDG-PET studies in Parkinson's disease. J Nucl Med 1996;37:1115-22
- Antonini A, Schwarz J, Oertel WH, Pogarell O, Leenders KL. Longterm changes of striatal dopamine D2 receptors in patients with Parkinson's disease: a positron emission tomography and C-11 raclopride. Moc Disord 1997;12:33-8 https://doi.org/10.1002/mds.870120107
- Brooks DJ, Ibanez V, Sawle GV, Playford ED, Quinn N, Mathias CJ, et al. striatal D2 receptor status in patients with Parkinson's disease, striatonigral degeneration, and progressive supranuclear palsy, measured with C-11 raclopride and positron emission tomography. Ann Neurol 1992;31:184-92 https://doi.org/10.1002/ana.410310209
- Kuhl DE, Metter EJ, Riege WH. Patterns of local glucose utilization determined in Parkinson's disease by the F-18 FDG method. Ann Neurol 1984;15:419-24 https://doi.org/10.1002/ana.410150504
- Turjanski N, Brooks DJ. PET and the investigation of dementia in the parkinsonian patient. J Neural Trasm 1997;51:37-48
- Peppard RF, Martin W, Carr GD, Grochowski E, Schulzer M, Guttman M, et al. cerebral glucose metabolism in Parkinson's disease with and without dementia. Arch Neurol 1992;49;1262-8 https://doi.org/10.1001/archneur.1992.00530360060019
- Huges AJ, Daniel SE, Blankson S, Lees AJ. A clinicopathological study of 100 cases in Parkinson's disease. Arch Neurol 1993;50:140-8 https://doi.org/10.1001/archneur.1993.00540020018011
- Tison F, Dartigues JF, Auriacombe S, Letenneur S, Boller F, Alperovitch A. Dementia in Parkinson's disease: a population-based study in ambulatory and institutionalized individuals. Neurology 1995;45:705-8 https://doi.org/10.1212/WNL.45.4.705
- Bohnen NI, Minoshima S, Giordani B, Frey KA, Kuhl DE. Motor correlates of occipital glucose hypometabolism in Parkinson's disease without dementia. Neurology 1999;52:541-6 https://doi.org/10.1212/WNL.52.3.541
- Hu MTM, Taylor-Robinson SD, Chaudhuri KR, Bell JD, LabbeC, Cunningham VJ, Koepp MJ, et al. Cortical dysfunction in non-demented Parkinson's disease patients. A combined 31P-MRS and 18 FDG-PET study. Brain 2000;123:340-52 https://doi.org/10.1093/brain/123.2.340
- Peppard RF, Martin WR, Clark CM, Carr GD, McGeer PL, Calne DB. Cortical glucose metabolism in Parkinson's and Alzheimer disease. J Neurosci Res 1990;27:561-8 https://doi.org/10.1002/jnr.490270417
- ArahataY, Hirayama M, Ieda T, Koike Y, Kato T, Tadokoro M, et al. Parietooccipital glucose hypometabolism in Parkinson's disease with autonomic failure. J Neurol Sci 1999;163:119-26 https://doi.org/10.1016/S0022-510X(99)00011-8
- Otsuka M, Kuwabara Y, Ichiya Y, Hosokawa S, Sasaki M, Yoshida T, et al. Differentiating between multiple system atrophy and Parkinson's disease by positron emission tomography with 18F-dopa and 18F-FDG. Ann Nucl Med 1997;11:251-7 https://doi.org/10.1007/BF03164771
- Eberling JL, Richardson BC, Reed BR, Wolfe N, Jagust W. Cortical glucose metabolism in Parkinson's disease without dementia. Neurobiol Aging 1994;15:329-35 https://doi.org/10.1016/0197-4580(94)90028-0
- Kaasinen V, Nagren K, Hietala J, Oikonen V, Vilkman H, Farde L, et al. Extrastriatal dopamine D2 and D3 receptors in early and advanced Parkinson's disease. Neurology 2000;54:1482-7 https://doi.org/10.1212/WNL.54.7.1482
- Rinne JO, Portin R, Ruottinen H, Nurmi E, Bergman J, et al. Cognitive impairment and the brain dopaminergic system in Parkinson's disease: [18F]fluorodopa positron emission tomography. Arch Neurol 2000;57:470-5 https://doi.org/10.1001/archneur.57.4.470
- Daum I, Schugens MM, Spieker S, Poster U, Schonle PW, Birbaumer N. Memory skill acquisitions in Parkinson's disease and frontal lobe dysfunction. Cortex 1995;31:413-32 https://doi.org/10.1016/S0010-9452(13)80057-3
- Taylor AE, Sain-Cyr JA, Lang AE. Frontal lobe dysfunction in Parkinson's disease. The cortical focus of neostriatal outflow. Brain 1986;109:845-83 https://doi.org/10.1093/brain/109.5.845
- Broussolle E, Cinotti L, Pollak P, Landais P, Le Bars D, Galy G, et al. Relief of akinesia by apomorphine and cerebral metabolic changes in Parkinson'sdisease. Mov Disord 1993;8:459-62 https://doi.org/10.1002/mds.870080407
- Leenders KL, Wolfson L, Gibbs JM, Wise RJ, Causon R, Jones T, et al. The effect of L-Dopa on regional cerebral blood flow and oxygen metabolism in patients with Parkinson's disease. Brain 1985;108:171-91 https://doi.org/10.1093/brain/108.1.171
- Gotham AM, Brown RG, Marsden CD. Frontal cognitive function in patients with Parkinson's disease on and off levodopa. Brain 1988;111:299-321 https://doi.org/10.1093/brain/111.2.299
- Swainson R, Rogers RD, Sahakian BJ, Summers BA, Polkey CE, Robbins TW. Probabilistic learning and reversal deficits in patients with Parkinson's disease or frontal temporal lobe lesions: possible adverse effects of dopaminergic medication. Neuropsychologica 2000;38:596-612 https://doi.org/10.1016/S0028-3932(99)00103-7
- Berding G, Odin P, Brooks DJ, Nikkhah G, Matthies C, et al. Resting regional cerebral glucose metabolism in advanced Parkinson's disease studied in the Off and On conditions with [18F] FDG-PET. Mov Disord 2001;16(6):1014-22 https://doi.org/10.1002/mds.1212
- Cohen J, Low P, Fealey R, Sheps S, Jiang NS. Somatic and autonomic function in progressive autonomic failure and multiple system atrophy. Ann Neurol 1987;22:692-99 https://doi.org/10.1002/ana.410220604
- Quinn N. Multiple system atrophy-the nature of the beast. J Neurol Neurosurg Psychiatry 1989;52(special suppl):78-89 https://doi.org/10.1136/jnnp.52.Suppl.78
- Fulham MJ , Dubinsky RM , Polinsky RJ, Brooks RA, Brown RT, Curras MT, et al. Computed tomography, magnetic resonance imaging and positron emission tomography with [18F] fluorodeoxyglucose in multiple system atrophy and pure autonomic failure. Clin Auto Res 1991;1:27-36 https://doi.org/10.1007/BF01826055
- Borit A, Rubinstein LJ, Urich H. The striatonigral degenerations : putaminal pigments and nosology. Brain 1975;98:101-12 https://doi.org/10.1093/brain/98.1.101
- Landis DMD, Rosenberg RN, Landis SC, Schut L, Nyhan WL. Olivopontocerebellar degeneration: clinical and ultrastructural abnormalities. Arch Neurol 1974;31:295-307 https://doi.org/10.1001/archneur.1974.00490410043003
- Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181-4 https://doi.org/10.1136/jnnp.55.3.181
- Gilman S, Koeppe RA, Junck L, Kluin KJ, Lohman M, St Laurent RT. Patterns of cerebral glucose metabolism detected with positron emission tomography differ in multiple system atrophy and olivopontocerebellar atrophy. Ann Neurol 1994;36:166-75 https://doi.org/10.1002/ana.410360208
- Otsuka M, Kuwabara Y, Ichiya Y, Hosokawa S, Sasaki M, Yoshida T, et al. Differentiating between multiple system atrophy and Parkinson's disease by positron emission tomography with 18F-dopa and 18F-FDG. Ann Nucl Med 1997;11:2517
- Taniwaki T, Nakagawa M, Yamada T, Yoshida T, Ohyagi Y, Sasaki M, et al. Cerebral metabolic changes in early multiple system atrophy: a PET study. J Neurol Sci 2002;200:79-84 https://doi.org/10.1016/S0022-510X(02)00151-X
- Perani D, Bressi S, Testa D, Grassi F, Cortelli P, Gentrini S, et al. Clinical/metabolic correlations in multiple system atrophy: a fludeoxy glucose F18 positron emission tomographic study. Arch Neurol 1995;52:179-85 https://doi.org/10.1001/archneur.1995.00540260085021
- Rosenthal G, Gilman S, Koeppe RA, Kluin KJ, Markel DS, Junck L, et al. Motor dysfunction in olivopontocerebellar atrophy is related to cerebral metabolic rate studied with positron emission tomography. Ann Neurol 1988;24:41-49 https://doi.org/10.1002/ana.410240109
- Wenning GK, Tison F, Ben Shlomo Y, Daniel SE, Quinn NP. Multiple system atrophy: a review of 203 pathologically proven cases. Mov Disord 1997;12:133-47 https://doi.org/10.1002/mds.870120203
- Eidelberg D, Takikawa S, Moeller JR, Dhawan V, Redington K, Chaly T, et al. Striatal hypometabolism distinguishes striatonigral degeneration from Parkinson's disease. Ann Neurol 1993;33:518-27 https://doi.org/10.1002/ana.410330517
- Steele JC. Progressive supranuclear palsy. Brain 1972;95:693-704
- D'Antona R, Baron JC, Samson Y, et al. Subcortical dementia. Frontal cortex hypometabolism detected by positron tomography in patients with progressive supranuclearpalsy. Brain 1985;108:785-99 https://doi.org/10.1093/brain/108.3.785
- Foster NL, Gilman S, Berent S, Morin EM, Brown MB, Koeppe RA. Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography. Ann Neurol 1988;24: 399-406 https://doi.org/10.1002/ana.410240308
- Goffinet AM, De Volder AG, Gillain C, et al. Positron tomography demonstrates frontal lobe hypometabolism in progressive supranuclear palsy. Ann Neurol 1989;25:131-9 https://doi.org/10.1002/ana.410250205
- Foster NL, Sima AAF, D'Amato C, et al. Cerebral cortical pathology in progressive supranuclear palsy is correlated with severity of dementia. Neurology 1996;46:A363.Abstract
- Hosaka Kayo, Ishii K, Sakamoto S, Tetsuya M, Sasaki M, Hirono N, et al. Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration. J Neurol Sci 2002;199:67-71 https://doi.org/10.1016/S0022-510X(02)00102-8
- Ishino H, Otsuki S. Frequency of Alzheimer's neurofibrillary tangles in the cerebral cortex in progressive supranuclear palsy (subcortical argyrophilic dystrophy). J Neurol Sci 1976; 28:309-16 https://doi.org/10.1016/0022-510X(76)90024-1
- Schneider JA, Watts RL, Gearing M, Brewer RP, Mirra SS. Corti-cobasal degeneration: neuropathologic and clinical heterogeneity. Neurology 1997;48:959-69 https://doi.org/10.1212/WNL.48.4.959
- Blin J, Vidailhet MJ, Pillon B, DuboisB, Feve JR, Agid Y. Corti-cobasal degeneration: decreased and asymmetrical glucose consumption as studied with PET. Mov Disord 1992;7:348-54 https://doi.org/10.1002/mds.870070409
- Eidelberg D, Dhawan V, Moeller JR, Sidtis JJ, Ginos JZ, Strother SC, et al. The metabolic landscape of cortico-basal ganglionic degeneration: regional asymmetries studied with positron emission tomography. J Neurol Neurosurg Psychiatry 1991;54:856-62 https://doi.org/10.1136/jnnp.54.10.856
- Laureys S, Salmon E, Garraux G, Peigneux P, Lemaire C, Degueldre C, et al. Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration. J Neurol 1999;246: 1151-8 https://doi.org/10.1007/s004150050534
- Galvin JE, Lee VMY, Schmidt ML, Tu PH, Iwatsubo T, and Trojanowski JQ. Pathophysiology of the Lewy body. Adv Neurol 1999;80:313-24
- McKeith LG, Galasko D, Kosaka K, et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies DLB): report of the consortium on DLB international workshop. Neurology 1996;47:1113-24 https://doi.org/10.1212/WNL.47.5.1113
- Albin RL, Minoshima S, D'Amato CJ, et al. Fluoro-deoxyglucose positron emission tomography in diffuse Lewy body disease. Neurology 1996;47:462-6 https://doi.org/10.1212/WNL.47.2.462
- Minoshima S, Foster NL, Sima AAF, Frey KA, Albin RL, Kuhl DE. Alzheimer's disease versus dementia with Lewy bodies: Cerebral metabolic distinction with autopsy confirmation. Annal Neurol 2001;50(3):358-65 https://doi.org/10.1002/ana.1133
- Vander Borght T, Minoshima S, Giordani B, et al. Cerebral metabolic differences in Parkinson's and Alzheimer's diseases matched for dementia severity. J Nucl Med 1997;38:797-802
- Spampinato U, Habert MO, Mas JL, et al. (99mTc)-HM-PAO SPECT and cognitive impairment in Parkinson's disease: a comparison with dementia of the Alzheimer type. J Neurol Neurosurg Psychiatry 1991;54:787-92 https://doi.org/10.1136/jnnp.54.9.787
- Liu RS, Lin KN, Wang SJ, et al. Cognition and 99Tcm-HMPAO SPECT in Parkinson's disease. Nucl Med Commun 1992;13:744-8 https://doi.org/10.1097/00006231-199213100-00007
- Donnemiller E, Heilmann J, Wenning GK, et al. Brain perfusion scintigraphy with 99mTc-HMPAO or 99mTc-ECD and 123I-beta- CIT single-photon emission tomography in dementia of the Alzheimer-type and diffuse Lewy body disease. Eur J Nucl Med 1997;24:320-5 https://doi.org/10.1007/BF01728771
- Imamura T, Ishii K, Sasaki M, et al. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer's disease: a comparative study using positron emission tomography. Neurosci Lett 1997;235:49-52 https://doi.org/10.1016/S0304-3940(97)00713-1
- Kuhl DE. Imaging local brain function with emission computed tomography. Radiology 1984;150:625-31 https://doi.org/10.1148/radiology.150.3.6607481
- Minoshima S, Frey KA, Foster NL, Kuhl DE. Preserved pontine glucose metabolism in Alzheimer disease: a reference region for functional brain image (PET) analysis. J Comput Assist Tomogr 1995;19:541-7 https://doi.org/10.1097/00004728-199507000-00006
- Gomez-Tortosa E, Newell K, Irizarry MC, et al. Clinical and quantitative pathologic correlates of dementia with Lewy bodies. Neurology 1999;53:1284-91 https://doi.org/10.1212/WNL.53.6.1284
- Rezaie P, Cairns NJ, Chadwick A, Lantos PL. Lewy bodies are located preferentially in limbic areas in diffuse Lewy body disease. Neurosci Lett 1996;212:111-4 https://doi.org/10.1016/0304-3940(96)12775-0
- Jagust WJ. Functional imaging patterns in Alzheimer's disease. Relationships to neurobiology. Ann NY Acad Sci 1996;777:30-6 https://doi.org/10.1111/j.1749-6632.1996.tb34398.x
- Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82:239-59 https://doi.org/10.1007/BF00308809
- Minoshima S, Giordani B, Berent S, et al. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer's disease. Ann Neurol 1997;42:85-94 https://doi.org/10.1002/ana.410420114
- Masliah E, Terry RD, Alford M, et al. Cortical and subcortical patterns of synaptophysinlike immunoreactivity in Alzheimer's disease. Am J Pathol 1991;138:235-46
- Hikosaka O, Sakamoto M, Miyashita N. Effects of caudate nucleus stimulation on substantia nigra cell activity in monkey. Exp Brain Res 1993;95:457-72
- Manford M, Andermann F. Complex visual hallucinations. Clinical and neurobiological insights. Brain 1998;121:1819-40 https://doi.org/10.1093/brain/121.10.1819
- Perry EK, McKeith I, Thompson P, et al. Topography, extent, and clinical relevance of neurochemical deficits in dementia of Lewy body type, Parkinson's disease, and Alzheimer's disease. Ann NY Acad Sci 1991;640:197-202 https://doi.org/10.1111/j.1749-6632.1991.tb00217.x