Sorption Behavior of $^{241}Am,\;^{152}Eu,\;^{160}Tb\;and\;^{60}Co$ in the Geological Materials: Eu as an Optimum Analogue for Fate and Transport of Am Behavior in Subsurface Environment

지질매체내에서의 $^{241}Am,\;^{152}Eu,\;^{160}Tb,\;^{60}Co$의 흡착특성비교: 지표지질내에서의 Am의 거동특성을 위한 최적 유사체로서의 Eu

  • Lee, Seung-Gu (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Kil-Yong (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Cho, Soo-Young (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yoon, Yoon-Yeol (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Yong-Je (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources)
  • 이승구 (한국지질자원연구원 지하수지열연구부) ;
  • 이길용 (한국지질자원연구원 지하수지열연구부) ;
  • 조수영 (한국지질자원연구원 지하수지열연구부) ;
  • 윤윤열 (한국지질자원연구원 지하수지열연구부) ;
  • 김용제 (한국지질자원연구원 지하수지열연구부)
  • Published : 2007.08.28

Abstract

Rare earth elements(REEs) have been used as an useful tool in understanding the various geological processes such as evolution and differentiation in the crust. The REEs also have been used as an analog of actinides for radioactive wastes at the water-rock interactions. Using physicochemical properties of the REEs and actinides, we have shown that Eu is an optimum analogue for understanding the behavior of Am in subsurface environments. Factors affecting sorption behavior of radioactive nuclides in groundwater were investigated by batch experiments. Four nuclides such as $^{241}Am,\;^{152}Eu,\;^{160}Tb\;and\;^{60}Co$ were selected to test our hypothesis, and $^{160}Tb$ and $^{60}Co$ were specifically used to compare to the sorption behavior between $^{241}Am-^{152}Eu$ and other radioactive nuclides. Four different rock samples and one groundwater were used in the batch experiments where solution pH for all experiments was fixed at 5.5. Our results demonstrate that $^{241}Am,\;^{152}Eu,\;and\;^{160}Tb$ show similar sorption behavior whereas $^{60}Co$ is different in sorption behavior at the mineral-water interface, suggesting that the sorption behavior of $^{60}Co$ is affected by different rock types. Our results also show that 1) Eu in REEs is optimum analogue of fate and transport of Am in subsurface environments, and 2) mineral compositions such as $SiO_2,\;TiO_2,\;P_2O_5$ and distribution of REEs such as Eu anomaly play key roles in affecting sorption behavior of radioactive nuclides even though physicochemical properties of geological materials such as specific surface area and cation exchange capacity can not be ruled out.

희토류원소는 지각의 진화, 분화작용 등을 포함한 여러 가지 지질학적 역사를 이해하는 매우 유용한 도구로서 활용되어 왔다. 뿐만 아니라, 이 희토류원소는 방사성폐기물의 처분과 관련된 물-암석반응연구에 있어서 액티나이드 원소의 유사체로서 사용되어져 왔다. 본 논문에서는 희토류원소인 Eu와 액티나이드 원소인 Am의 유사한 물리적/화학적 특성을 토대로 지질매체의 종류에 관계없이 희토류원소와 액티나이드 원소의 거동이 매우 유사하다는 가설을 설정하고 이를 검증하기 위한 회분식(batch experiment) 실험을 수행하였다. 회분식 실험에는 4종류의 암석(화강암, 화강암질 편마암, 앰피볼라이트, 응회암)을 지질매체로 선택하였고, 고준위 방사성 핵종으로는 액티나이드계열인 $^{241}Am$, 희토류원소 계열인 $^{152}Eu,\;^{160}Tb$을 선택하였고, 중저준위 핵종으로는 $^{60}Co$를 사용하였다. 특히 $^{160}Tb$$^{60}Co$$^{241}Am-^{152}Eu$의 흡착능과 다른 방사성핵종의 흡착능을 비교하는데 사용되었다. 핵종과 혼합한 흡착실험용 용액의 pH는 5.5전후로 조절하였다. 실험결과, $^{241}Am,\;^{152}Eu,\;^{160}Tb$의 흡착 특성은 암상의 변화에 관계없이 매우 유사하게 나타났지만, $^{60}Co$는 다르게 나타났다. 이는 $^{60}Co$의 흡착특성은 암상의 종류에 따라 큰 차이가 있음을 지시해주는 것이다. 이와 같은 실험결과는 1) 희토류원소 중 Eu이 지표지질하에서의 Am의 거동을 추적하고 예측하기 위한 최적 유사체이고, 2) 비록 암석가루의 비표면적 혹은 양이온교환능과 같은 물리적/화학적 특성에 의한 영향을 배제할 수는 없지만, $SiO_2,\;TiO_2,\;P_2O_5$같은 화학조성 및 Eu의 이상과 같은 희토류원소의 분포도의 차이가 지표지질하에서의 방사성 핵종의 흡착거동에 중요한 역할을 하고 있음을 지시해주는 것이다.

Keywords

References

  1. Angove, M.J., Johnson, B.B. and Wells, J.D. (1998) The influence of Temperature on the Adsorption of Cadmium(II) and Cobalt(II) on Kaolinite. Jour. Colloid Interface Sci. 204, 93-103 https://doi.org/10.1006/jcis.1998.5549
  2. Baik., M.H., Hyun, S.P., Cho, W.J. and Hahn, P. S. (2004) Contribution of minerals to sorption of U(IV) on granite. Radiochim. Acta 92, 663-669 https://doi.org/10.1524/ract.92.9.663.54980
  3. Bau, M. (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contr. Mineral. Petrol. 123, 323-333 https://doi.org/10.1007/s004100050159
  4. Bauer, A., Rabung, T., Claret, E, Schfer, T., Buckau, G. and Fang Hnel, T. (2005) Influence of temperature on sorption of europium onto smectite: The role of organic contaminants. Appl. Clay Sci. 30, 1-10 https://doi.org/10.1016/j.clay.2005.02.001
  5. Berry, J.A. and Bond, K.A. (1992) Studies of the Extent of Surface Diffusion in the Migration of Radionuclides through Geological Materials. Radiochimi. Acta, 58/59, 329-335
  6. Buddemeier, R.W., Finkel, R.C., Marsh, K.V., Ruggieri, M.R., Rego, J.H. and Silva, R.J. (1991) Hydrology and Radionuclide at the Nevada Test Site. Radiochim. Acta, 52/53, 275-282
  7. Curti, E. (1999) Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Appl. Geochem. 14, 433-445 https://doi.org/10.1016/S0883-2927(98)00065-1
  8. Emrn, A.T. (1993) The influence of heterogeneous rock chemistry on the sorption of radionuclides in flowing groundwater. Jour. Contam. Hydro. 13, 131-141 https://doi.org/10.1016/0169-7722(93)90054-V
  9. Guiterrez, M.G., Bidoglio, G., Avogadro, A., Mingarro, E. and D'Alessandro, M. (1991) Experimental Investigations of radionuclide transport through cored granite samples. Radiochim. Acta 52/53, 213-217
  10. Heath, M. J., Montoto, M., Rodriguez rey; A., Ruiz de Argandoa, V.G. and Menendez, B. (1992) Rock Matrix Diffusion as a Mechanism of Radionuclide Retardation: A Natural Analogue Study of El Berrocal Granite, Spain. Radiochim. Acta 58/59, 379-384
  11. Henderson, P. (1984) Rare Earth Element Geochemistry: Developments in Geochemistry. Elsevier, Amsterdam-Oxford-New York-Tokyo, 510p
  12. Irber, W. (1999) The lanthanide tetrad effect and its correlation with KlRb, $Eu/Eu^{*}$, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta 63, 489-508 https://doi.org/10.1016/S0016-7037(99)00027-7
  13. Hilton, J., Nolan, L. and Jarvis, K.E. (1997) Concentrations of stable isotopes of cesium and strontium in fresh waters in northern England and their efforts on estimates of sorption coefficients (Kd). Geochim. Cosmochim. Acta 61, 1115-1124 https://doi.org/10.1016/S0016-7037(96)00398-5
  14. Johannesson, K.H., Zhou, X. and Stetzenbach, K.J. (1995a) Rare earth elements and groundwater mixing: An example from southern Nevada. EOS. 76, F276 https://doi.org/10.1029/95EO00170
  15. Johannesson, K.H., Stetzenbach, K.J. and Hodge, V.F. (1995b) Speciation of the rare earth element neodymium in groundwaters of the Nevada test sites and the Yucca Mountain and implications for the actinide solubility. Appl. Geochem. 10, 565-572 https://doi.org/10.1016/0883-2927(95)00028-3
  16. Johannesson, K., Stetzenbach, K.J., Hodge, V.H. and Lyons, W.B. (1996) Rare earth element complexation behaviour in circumneutral pH groundwaters: Assessing the role of carbonate and phosphate ions. Earth Planet. Sci. Lett., 139, 305-319 https://doi.org/10.1016/0012-821X(96)00016-7
  17. Johansson, B. and Rosengren, A. (1975) Interpolation scheme for the cohesive energies for the lanthanides and actinides. Physic. Rev., B11, 1367-1373
  18. Kashparov. V.A., Protsak, V.P., Ahamdach, N., Stammose, D., Peres, J.M., Yoscheko, V.I. and Zvarich, S.I. (2000) Dissolution kinetics of particles of irradiated Chernobyl nuclear fuel: influence of pH and oxidation state on the release of radionuclides in the contaminated soil of Chernobyl. Jour. Nuclear Mat. 279, 225-233 https://doi.org/10.1016/S0022-3115(00)00010-6
  19. Krauskopf, K.B. (1986a) Aqueous geochemistry of radioactive waste disposal. Appl. Geochem. 1, 15-23 https://doi.org/10.1016/0883-2927(86)90034-X
  20. Krauskopf, K.B. (1986b) Thorium and rare earth metalsas as analogs for actinide elements. Chem. Geol. 55, 323-335 https://doi.org/10.1016/0009-2541(86)90033-1
  21. Lee, K.Y., Yoon, Y.Y., Lee, S.G., Lee, D.H., Kim, Y. and Woo, N.C. (2001) Sorption of radionuclides on the container wall during batch migration studies. Jour. Radioanal. Nuclear Chem. 249, 271-278 https://doi.org/10.1023/A:1013223408429
  22. Lee, S.G., Lee, D.H., Kim, Y., Chae, B.G., Kim, W.Y. and Woo, N.C. (2003) Rare earth elements as an indicator of groundwater environment changes in a fractured rock system: Evidence from fractured-filling calcite. Appl. Geochem. 18, 135-143 https://doi.org/10.1016/S0883-2927(02)00071-9
  23. Lee, S.G., Kim, Y., Chae, B.G., Koh, D.C. and Kim, K.H. (2004) The geochemical implication of a variable Eu anomaly in a fractured gneiss core: application for understanding Am behavior in the geological environment. Appl. Geochem. 19, 1711-1725 https://doi.org/10.1016/j.apgeochem.2004.03.008
  24. Lee, S.G., Lee, K.Y., Cho, S.Y., Yoon, Y.Y. and Kim, Y. (2006) Sorption properties of $^{152}Eu\;and\;^{241}$Am in geological materials: Eu as an analogue for monitoring Am behaviour in heterogeneous geological environments. Geosci. Jour. 10, 103-114 https://doi.org/10.1007/BF02910354
  25. Lipin, B.R. and McKay, G.A. (1989) Geochemistry and Mineralogy of Rare Earth Elements. Reviews in Mineralogy, vol. 21, Mineralogical Society of America, 348pp
  26. Lippold, H., Miler, N. and Kupsch, H. (2005) Effect of humic acid on the pH-dependent adsorption of terbium(III) onto geological materials. Appl. Geochem. 20, 1209-1217 https://doi.org/10.1016/j.apgeochem.2005.01.004
  27. Masuda, A. (1975) Abundances of mono isotopic REE, consistent with the Leedey chondritic values. Geochem. Jour. 9, 183-184 https://doi.org/10.2343/geochemj.9.183
  28. Masuda, A. Nakamura, N. and Tanaka, T. (1973) Fine Structure of mutually normalized rare-earth patterns of chondrites. Geochim. Cosmochim. Acta 37, 239-248 https://doi.org/10.1016/0016-7037(73)90131-2
  29. McCarthy, J.F., Sanford, W.E. and Stafford, P.L. (1998) Lanthanide Field Tracers Demonstrate Enhanced Transport of Transuranic Radionuclides by Natural Organic Matter. Environ. Sci. Technol. 32, 3901-3906 https://doi.org/10.1021/es971004f
  30. Meece, D.E. and Benninger, L.K. (1993) The coprecipitation of Pu and other radionuclide with $CaCO_{3}$ Geochim. Cosmochim. Acta 57, 1447-1458 https://doi.org/10.1016/0016-7037(93)90005-H
  31. Menard, O., Advocat, T., Ambroai, J. P. and Michard, M.A. (1998) Behaviour of the actinides (Th, U, Np and Pu) and rare earths (La, Ce, and Nd) during aqueous leaching of a nuclear glass under geological disposal conditions. Appl. Geochem. 13, 105-126 https://doi.org/10.1016/S0883-2927(97)00057-7
  32. Metz, V., Kienzler, B. and Schier, W. (2003) Geochemical evaluation of different groundwater-host rock systems for radioactive waste disposal. Jour. Contam. Hydro. 61, 265-279 https://doi.org/10.1016/S0169-7722(02)00130-4
  33. Neretnieks, I., Eriksen, T. and Thtinen, P. (1982) Tracer Movement in a Single Fissure in Granitic Rock: Some Experimental Results and Their Interpretation. Water Res. Res. 18, 849-858 https://doi.org/10.1029/WR018i004p00849
  34. Pacheco, G., Nava-Galve, G., Bosch, P. and Bulbulian, S. (1995) $^{60}Co$ sorption-desorption in Mexican montmorillonites. Jour. Radioanal. Chem. Lett. 200, 259-264 https://doi.org/10.1007/BF02164088
  35. Papelis, C. (2001) Cation and anion sorption on granite from the Project Shoal Test Area, near Fallen, Nevada, USA. Advanced Environ.l Res. 5, 151-166 https://doi.org/10.1016/S1093-0191(00)00053-8
  36. Petit, J.-C. (1991) Natural Analogue Aspects of Radionuclide Transport in the Geosphere. Radiochim. Acta 52/53, 337-340
  37. Runde, W., Conradson, S. D., Efurd, W., Lu, N-P., VanPelt, C. E. and Tait, C. D. (2002) Solubility and sorption of redox-sensitive radionuclides (Np, pu) in J-13 water from Yucca Mountain site: comparison between experiment and theory. Appl. Geochem 17, 837-853 https://doi.org/10.1016/S0883-2927(02)00043-4
  38. Sakuragi, T.S., Sato, S., Kozaki, T. (2002) Sorption of Eu(III) on Kaolinite in the presence of humic acid: Effects of Ionic Strength. Chem. Lett. 656-657
  39. Sakuragi, T., Sato, S., Kozaki, T., Mitsugashira, T., Hara, M. and Suzuki, Y. (2004) Am(III) and Eu(III) uptake on hematite in the presence of humic acid. Radiochim Acta 92, 697-702 https://doi.org/10.1524/ract.92.9.697.54978
  40. Samadfam, M., Jintoku, T., Sato, S., Ohashi, H., Mitsugashira, T. and Hara, M. (2000) Effects of humic acid on the sorption of Am(III) and Cu(III) on kaolinite. Radichim. Acta 88, 717-721 https://doi.org/10.1524/ract.2000.88.9-11.717
  41. Saripalli, K.P., McGrail, B.P. and Girvin, D.C. (2002) Adsorption of molybdenum on to anatase from dilute aqueous solutions. Appl. Geochem. 17, 649-656 https://doi.org/10.1016/S0883-2927(01)00127-5
  42. Schlegel, M.L., Charlet, L. and Manceau, A. (1999) Sorption of Metal Ions on Clay Minerals: II. Mechanism of Co Sorption on Hectorite at High and Low Ionic Strength and Impact on the Sorbent Stability. Jour. Colloid Interface Sci. 220, 392-405 https://doi.org/10.1006/jcis.1999.6538
  43. Stipp, S.L.S., Lakstanov, L.Z., Jensen, J.T. and Baker, J.A. (2003) Preliminary results from coprecipitation experiments and observations with surface-sensitive techniques. Jour. Contam. Hydro. 61, 33-43 https://doi.org/10.1016/S0169-7722(02)00111-0
  44. Sverjensky, D.A. (1984) Europium redox equilibria in aqueous solution. Earth. Planet. Sci. Lett., 67, 70-78 https://doi.org/10.1016/0012-821X(84)90039-6
  45. Takahashi, Y., Kimura, T., Kato, Y., Minai, Y. and Tominaga, T. (1998a) Characterization of Eu(III) Species Sorbed on Silica and Montmorillonite by Laser-Induced Fluorescence Spectroscopy. Radichim. Acta 82, 227-232
  46. Takahashi, Y., Minai Y., Kimura, T. and Tominga, T. (1998b) Adsorption of europium(III) and americium(III) on kaolinite and montmorillonite in the presence of humic acid. Jour. Radioanal. Nuclear Chem. 243, 277-282
  47. Turin, H.J., Groffman, A.R., Wolfsberg, L.E., Roach, J.L. and Strietelmeier, B.A. (2002) Tracer and radionuclide sorption to vitric tuffs of Busted Butte, Nevada. Appl. Geochem. 17, 825-836 https://doi.org/10.1016/S0883-2927(02)00042-2
  48. Wood, S.A., Middlesworth, P.V., Gibsson, P. and Ricketts, A. (1997) The mobility of REE, U and Th in geological environments in Idaho and their relevance to radioactive waste disposal. Jour. Alloy. Comp. 249, 136-141 https://doi.org/10.1016/S0925-8388(96)02831-9