References
- G. E. Andrews, An introduction to Ramanujan's lost notebook, Amer. Math. Monthly 86 (1979), 89-108 https://doi.org/10.2307/2321943
- G. E. Andrews, Ramanujan's lost notebook. III. The Rogers-Ramanujan continued fraction, Adv. Math. 41 (1981), 186-208 https://doi.org/10.1016/0001-8708(81)90015-3
- W. N. Bailey, On the simplification of some identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (3) (1951), 217-221 https://doi.org/10.1112/plms/s3-1.1.217
- B. C. Berndt, Ramanujan's Notebooks II, Springer-Verlag, 1989
- B. C. Berndt, Ramanujan's Notebooks III, Springer-Verlag, 1991
- B. C. Berndt, Ramanujan's Notebooks IV, Springer-Verlag, 1993
- B. C. Berndt, Ramanujan's Notebooks V, Springer-Verlag, 1997
- B. C. Berndt, S.-S. Huang, J. Sohn, and S. H. Son, Some theorems on the Rogers Ramanujan continued fraction in Ramanujan's lost notebook, Trans. Amer. Math. Soc. 352 (2000), 2157-2177 https://doi.org/10.1090/S0002-9947-00-02337-0
- B. C. Berndt and H. H. Chan, Some values for the Rogers-Ramanujan continued fraction, Canad. J. Math. 47 (1995), 897-914 https://doi.org/10.4153/CJM-1995-046-5
- B. C. Berndt, H. H. Chan, and L.-C. Zhang, Explicit evaluations of the Rogers-Ramanujan continued fraction, J. Reigne Angew. Math. 480 (1996), 141-159
- P. B. Borwein and P. Zhou, On the irrationality of a certain q series, Proc. Amer. Math. Soc. 127 (1999), 1605-1613 https://doi.org/10.1090/S0002-9939-99-04722-X
- S.-S. Huang, Ramanujan's evaluations of the Rogers-Ramanujan type continued fractions at primitive roots of unity, Acta Arith. 80 (1997), 49-60 https://doi.org/10.4064/aa-80-1-49-60
- N. Ishida, Generators and equations for modular function fields of principal congruence subgroups, Acta Arith. 85 (1998), 197-207 https://doi.org/10.4064/aa-85-3-197-207
- S.-Y. Kang, Some theorems on the Rogers-Ramanujan continued fraction and associated theta function identities in Ramanujan's lost notebook, The Ramanujan Journal 3 (1999), 91-111 https://doi.org/10.1023/A:1009869426750
- S.-Y. Kang, Ramanujan's formulas for the explicit evaluation of the Rogers-Ramanujan continued fraction and theta functions, Acta Arith. 90 (1999), 49-68 https://doi.org/10.4064/aa-90-1-49-68
- D. Kim and J. K. Koo, Algebraic integer as values of elliptic functions, Acta Arith. 100 (2001), 105-116 https://doi.org/10.4064/aa100-2-1
- D. Kim and J. K. Koo, On the infinite products derived from theta series I, J. Korean Math. Soc. 44 (2007), 55-107 https://doi.org/10.4134/JKMS.2007.44.1.055
- D. Kubert and S. Lang, Units in the modular function fields, Math. Ann. 218 (1975), 175-189 https://doi.org/10.1007/BF01370818
- S. Lang, Elliptic Functions, Addison-Wesley, 1973
- S. Ramanujan, Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957
- S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, 1988
- L. J. Rogers, On two theorems of combinatory analysis and some allied identities, Proc. London Math. Soc. (1) 16 (1917), 315-336
- L. J. Rogers, Second memoir on the expansion of certain infinite products, Proc. London Math. Soc. (1) 25 (1894), 318-343 https://doi.org/10.1112/plms/s1-25.1.318
- A. V. Sills, Finite Rogers-Ramanujan type identities, Electron. J. Combin. 10 (2003), 1-122
- J. Silverman, The Arithmetic of Elliptic Curves, Springer -Verlag, New York, 1986
- L. J. Slater, A new proof of Roger's transformations of series, Proc. London Math. Soc. sereis 2 53 (1951), 461-475
- L. J. Slater, Further identities of the Rogers-Ramanujan type, Proc. London Math. Soc. series 2 54 (1952), 147-167 https://doi.org/10.1112/plms/s2-54.2.147
- S. Son, Cubic identities of theta functions, The Ramanujan Journal 2 (1998), 303-316 https://doi.org/10.1023/A:1009751614537
- S. Son, Some theta function identities related to Rogers- Ramanujan continued fraction, Proc. Amer. Math. Soc. 126 (1998), 2895-2902 https://doi.org/10.1090/S0002-9939-98-04516-X
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Press, 1978