Numerical modelling of electromagnetic waveguide effects on crosshole radar measurements

시추공간 레이다 측정에서 전자기 도파관 효과의 수치모델링

  • Jang, Han-Nu-Ree (Department of Environmental Exploration Engineering, Pukyong National University) ;
  • Park, Mi-Kyung (Department of Environmental Exploration Engineering, Pukyong National University) ;
  • Kim, Hee-Joon (Department of Environmental Exploration Engineering, Pukyong National University)
  • 장한누리 (부경대학교, 환경탐사공학과) ;
  • 박미경 (부경대학교, 환경탐사공학과) ;
  • 김희준 (부경대학교, 환경탐사공학과)
  • Published : 2007.02.28

Abstract

High-frequency electromagnetic (EM) wave propagation associated with borehole ground-penetrating radar (GPR) is a complicated phenomenon. To improve the understanding of the governing physical processes, we employ a finite-difference time-domain solution of Maxwell's equations in cylindrical coordinates. This approach allows us to model the full EM wavefield associated with crosshole GPR surveys. Furthermore, the use of cylindrical coordinates is computationally efficient, correctly emulates the three-dimensional geometrical spreading characteristics of the wavefield, and is an effective way to discretise explicitly small-diameter boreholes. Numerical experiments show that the existence of a water-filled borehole can give rise to a strong waveguide effect which affects the transmitted waveform, and that excitation of this waveguide effect depends on the diameter of the borehole and the length of the antenna.

시추공 지중레이다 고주파수 전자기파 전파와 관련된 현상은 복잡하다. 그 물리적 과정을 보다 잘 이해하기 위해서 본 연구에서는 원통좌표계에서 맥스웰방정식의 유한차분 시간영역 해를 이용하였다. 이 방법은 시추공간 레이다탐사에서 전자기파의 전파형을 모델링할 수 있다. 그리고 원통좌표계는 계산 효율이 높고, 파동장의 3 차원적인 기하학적 확산을 정확하게 계산할 수 있으며 또 작은 크기의 시추공을 이산화할 때 효과적이다. 수치계산 결과를 통해 물로 채워진 시추공은 전파 파형에 영향을 주는 강한 도파관 효과를 일으킬 수 있으며, 그 도파관 효과는 시추공의 크기와 안테나의 길이에 의존한다.

Keywords

References

  1. Alumbaugh, D., and Chang, P. Y., 2002, Estimating moisture contents in the vadose zone using cross-borehole ground penetrating radar: A study of accuracy and repeatability: Water Resources Research 38, 1309. doi: 10.1029/2001WR000754
  2. Berenger, J. P., 1994, A perfectly matched layer for the absorption of electromagnetic waves: Journal of Computational Physics 114, 185-200. doi: 10.1006/jcph.1994.1159
  3. Bergmann, T., Blanch, J. O., Robertsson, A., and Holliger, K., 1999, A simplified Lax-Wendroff correction for staggered-grid FDTD modeling of electromagnetic wave propagation in frequency-dependent media: Geophysics 64, 1369-1377. doi: 10.1190/1.1444642
  4. Day-Lewis, F. D., Lane, J. W., Harris, J. M., and Gorelick, S. M., 2003, Time-lapse imaging of saline tracer transport in fractured rock using difference radar attenuation tomography: Water Resources Research 39, 1290. doi: 10.1029/2002WR001722
  5. Ebihara, S., Sato, M., and Niitsuma, H., 1998, Analysis of a guided wave along a conducting structure in a borehole: Geophysical Prospecting 46, 489-505. doi: 10.1046/j.1365-2478.1998.00104.x
  6. Ellefsen, K. J., and Wright, D. L., 2005, Radiation pattern of a borehole radar antenna: Geophysics 70, K1-K11. doi: 10.1190/1.1852779
  7. Ernst, J. R., Holliger, K., Maurer, H., and Green, A. G., 2006, Realistic FDTD modelling of borehole georadar antenna radiation: methodology and application: Near Surface Geophysics 4, 19-30
  8. Fullagar, P. K., Livelybrooks, D. W., Zhang, P., Calvert, A. J., 2000, Radio tomography and borehole radar delineation of the McConnell nickel sulfide deposit, Sudbury, Ontario, Canada: Geophysics 65, 1920-1930. doi: 10.1190/1.1444876
  9. Holliger, K., and Bergmann, T., 2002, Numerical modeling of borehole georadar data: Geophysics 67, 1249-1257. doi: 10.1190/1.1500387
  10. King, R. W. P., and Smith, G. S., 1981, Antennas in Matter: Fundamentals, Theory, and Applications, MIT Press
  11. Moran, M. L., and Greenfield, R. J., 1993, Radar signature of a 2.5-D tunnel: Geophysics 58, 1573-1587. doi: 10.1190/1.1443373
  12. Moysey, S., and Knight, R. J., 2004, Modeling the field-scale relationship between dielectric constant and water content in heterogeneous systems: Water Resources Research 40, W03510. doi: 10.1029/2003WR002589
  13. Olhoeft, G. R., 1988, Interpretation of hole-to-hole radar measurements: Proceedings of the 3rd Symposium on Tunnel Detection, pp. 616-629
  14. Olsson, O., Falk, L., Forslund, O., Lundmark, L., and Sandberg, E., 1992, Borehole radar applied to the characterization of hydraulically conductive fracture zones in crystalline rock: Geophysical Prospecting 40, 109-116. doi: 10.1111/j.1365-2478.1992.tb00367.x
  15. Pratt, R. G., and Worthington, M. H., 1988, The application of diffraction tomography to cross-hole seismic data: Geophysics 53, 1284-1294. doi: 10.1190/1.1442406
  16. Sato, M., and Thierbach, R., 1991, Analysis of a borehole radar in crosshole mode: IEEE Transactions on Geoscience and Remote Sensing 29, 899-904. doi: 10.1109/36.101368
  17. Sullivan, D.M., 2000, Electromagnetic Simulation Using the FDTD Method, IEEE Press
  18. Tronicke, J., Holliger, K., Barrash, W., and Knoll, M.D., 2004, Multivariate analysis of cross-hole georadar velocity and attenuation tomograms for aquifer zonation:Water Resources Research 40, W01519. doi: 10.1029/2003WR002031
  19. Williamson, P.R., and Worthington, M.H., 1993, Resolution limits in ray tomography due to wave behaviour: Geophysics 58, 727-735. doi: 10.1190/1.1443457
  20. Yee, K.S., 1966, Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media: IEEE Transactions on Antennas and Propagation 14, 302-307. doi: 10.1109/ TAP.1966.1138693
  21. Zhou, C., Cai,W., Luo,Y., Schuster, G., and Hassanzadeh, S., 1995, Acoustic wave-equation traveltime and waveform inversion of crosshole seismic data: Geophysics 60, 765-773. doi: 10.1190/1.1443815