Molecular Modeling and its Experimental Verification for the Catalytic Mechanism of Candida antarctica Lipase B

  • Kwon, Cheong-Hoon (Department of Chemical and Biological Engineering, Korea University) ;
  • Shin, Dae-Young (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Jong-Ho (Department of Chemical and Biological Engineering, Korea University) ;
  • Kim, Seung-Wook (Department of Chemical and Biological Engineering, Korea University) ;
  • Kang, Jeong-Won (Department of Chemical and Biological Engineering, Korea University)
  • Published : 2007.07.31

Abstract

Quantum mechanical and molecular dynamics simulation analysis has been performed on the model system for CALB (Candida antarctica lipase B) with esters to study the reaction mechanism and conformational preference of catalytic hydrolysis and the esterification reaction. Using quantum mechanical analysis, the ping-pong bi-bi mechanism was applied and energies and 3-dimensional binding configurations of the whole reaction pathways were calculated. Further molecular dynamics simulation analysis was performed on the basis of the transition state obtained from quantum mechanical study to observe the effect of structures of the substrates. Calculation results using substrates of different chain length and chiral configurations were compared for conformational preference. The calculated results showed very small influence on chain length, whereas chiral conformation showed big differences. Calculated results from molecular modeling studies have been compared qualitatively with the experimental data using racemic mixtures of (${\pm}$)-cis-4-acetamido-cyclopent-2-ene-1-ethyl acetate as substrates.

Keywords

References

  1. Anderson, E. M., K. M. Larsson, and O. Kirk. 1998. One biocatalyst - many applications: The use of Candida antarctica B-lipase in organic synthesis. Biocatal. Biotransform. 16: 181-204 https://doi.org/10.3109/10242429809003198
  2. Brooks, B. R., S. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus. 1983. A program for macromolecular energy, minimization, and dynamics calculations. J. Compo Chem. 4: 187-217 https://doi.org/10.1002/jcc.540040211
  3. CAChe Workspace Ver. 6.1. 2003. Fujitsu
  4. Colombo, G, S. Toba, and K. M. Merz Jr. 1999. Rationalization of the enantioselectivity of subtilisin in DMF. J. Am. Chem. Soc. 121: 3486-3493 https://doi.org/10.1021/ja9839062
  5. Discovery Studio Modeling 1.1. 2003. Accelrys Inc
  6. GAUSSIAN 03W. 2003. Gaussian Inc
  7. Guallar, V., M. Jacobson, A. McDermott, and R. A. Friesner. 2004. Computational modeling of the catalytic reaction in triosephosphate isomerase. J. Mol. Biol. 337: 227-239 https://doi.org/10.1016/j.jmb.2003.11.016
  8. Hleffuer, F., T. Nonn, and K. Hult. 1998. Molecular modeling of the enantioselectivity in lipase-catalyzed transesterification reactions. Biophys. J. 74: 1251-1262 https://doi.org/10.1016/S0006-3495(98)77839-7
  9. Houde, A., A. Kademi, and D. Leblanc. 2004. Lipases and their industrial applications: An overview. Appl. Biochem. Biotechnol. 118: 155-170 https://doi.org/10.1385/ABAB:118:1-3:155
  10. Hwan, D. J., M. J. Anderson, D. W. Denning, and E. B. Bauer. 2004. Inference of Aspergillusjumigatus pathways by computational genome analysis: Tricarboxylic acid cycle (TCA) and glyoxylate shunt. J. Microbiol. Biotechnol. 14: 74-80
  11. Hyperchem Release 7.0 for Windows. 2002. Hypercube Inc
  12. Jang, S. and G. A. Voth. 1997. Simple reversible molecular dynamics algorithms for Nose-Hoover chain dynamics. J. Chem. Phys. 107: 9514-9526 https://doi.org/10.1063/1.475247
  13. Jung, J. Y., H. S. Yun, and E. K. Kim. 1997. Hydrolysis of olive oil by lipase, immobilized on hydrophobic support. J. Microbiol. Biotechnol. 7: 151-156
  14. Ke, T., B. Tidor, and A. M. Klibanov. 1998. Molecularmodeling calculations of enzymatic enantioselectivity taking hydration into account. Biotechnol. Bioeng. 57: 741-745 https://doi.org/10.1002/(SICI)1097-0290(19980320)57:6<741::AID-BIT11>3.0.CO;2-A
  15. Krishna, S. H. and N. G. Karanth. 2002. Lipases and Iipasecatalyzed esterification reactions in nonaqueous media. Catal. Rev. Sci. Eng. 44: 499-592 https://doi.org/10.1081/CR-120015481
  16. Lanig, H., O. G. Othersen, F. R. Beierlein, U. Seidel, and T. Clark. 2006. Molecular dynamics simulations of the tetracycline-repressor protein: The mechanism of induction. J. Mol. Biol. 359: 1125-1136 https://doi.org/10.1016/j.jmb.2006.04.014
  17. Lee, S. G., Y. J. Kim, S. I. Han, Y. K. Oh, S. H. Park, Y. H. Kim, and K. S. Hwang. 2006. Simulation of dynamic behavior of glucose- and tryptophan-grown Escherichia coli using constraint-based metabolic models with a hierarchical regulatory network. J. Microbiol. Biotechnol. 16: 993-998
  18. Lin, J. Q., S. M. Lee, and Y. M. Koo. 2005. Modeling and simulation of simultaneous saccharification and fermentation of paper mill sludge to lactic acid. J. Microbiol. Biotechnol. 15: 40-47
  19. Magnusson, A. 2005. Rational redesign of Candida antarctica lipase B. Thesis. AlbaNova University Center, Sweden
  20. Monecke, P., R. Friedemann, S. Naumann, and R. Csuk. 1998. Molecular modelling studies on the catalytic mechanism of Candida rugosa lipase. J. Mol. Model. 4: 395-404 https://doi.org/10.1007/s008940050097
  21. Nicklaus, M. C. 1996. Conformational energies calculated by the molecular mechanics program CHARMm. J. Comp. Chem. 18: 1056-1060
  22. Norin, M., K. Hult, A. Mattson, and T. Norin. 1993. Molecular modeling of chymotrypsin-substrate interactions: Calculation of enantioselectivity. Biocatalysis 7: 131-147 https://doi.org/10.3109/10242429309003667
  23. Parkkinen, T., T. K. Nevanen, A. Koivula, and J. Rouvinen. 2006. Crystal structures of an enantioselective fab-fragment in free and complex forms. J. Mol. Biol. 357: 471-480 https://doi.org/10.1016/j.jmb.2005.12.045
  24. Raza, S., L. Fransson, and K. Hult. 2001. Enantioselectivity in Candida antarctica lipase B: A molecular dynamics study. Protein Sci. 10: 329-338 https://doi.org/10.1110/ps.33901
  25. Sharma, R., Y. Chisti, and U. C. Banerjee. 2001. Production, purification, characterization, and applications of lipases. Biotechnol. Adv. 19: 627-662 https://doi.org/10.1016/S0734-9750(01)00086-6
  26. Stewart, J. J. P. 1989. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 10: 209-220 https://doi.org/10.1002/jcc.540100208
  27. Uppenberg, J., M. T. Hansen, S. Patkar, and T. A. Jones. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure 2: 293-308 https://doi.org/10.1016/S0969-2126(00)00031-9