DOI QR코드

DOI QR Code

지속시간 및 표고에 따른 강우량 보정에 관한 연구

Rainfall Adjustment on Duration and Topographic Elevation

  • 엄명진 (연세대학교 대학원 토목공학과) ;
  • 조원철 (연세대학교 공과대학 사회환경시스템공학부) ;
  • 임해욱 (㈜서영엔지니어링)
  • 발행 : 2007.07.31

초록

본 연구에서는 제주도내 강우 관측자료를 활용하여 강우지속시간 및 표고에 따른 강우량 보정기법을 개발하였다. 이를 위해 기상청 관측소(기상관서:4개소, AWS:13개소)의 시우량 자료와 표고별 분포를 이용하여 표고와 강우지속 시간에 대한 다항회귀분석을 수행하였다. 회귀된 모형의 평가에서 강우지속시간은 표고보다 강우량과 좋은 상관성을 나타내었으며, 강우량 보정시 표고만을 고려한 모형은 과대한 보정을 하였다. 따라서 수자원 설계시 기존의 표고만을 고려한 모형보다 본 연구에서 제시된 강우지속시간 및 표고를 동시에 고려한 모형을 적용할 경우 실제 강우 사상을 더욱 잘 반영할 것으로 판단된다. 그러나 본 연구에서 제시된 모형은 향후 부족한 표고별 강우 관측소와 짧은 강우 관측기간 등에 대한 보완이 필요하다.

The objective of this study is to develop a method of rainfall adjustment on duration and topographic elevation for rainfall data in Jejudo. The method of rainfall adjustment is based on the polynomial regression analysis for the hourly rainfall data and the distribution of observatories of korea meteorological administration. As the results of modeling have shown, duration and rainfall are more correlated than topographic elevation and rainfall, and the model which considers only an elevation exaggerates the amount of rainfall adjustment. Hence the model of duration-elevation-rainfall is more competitive to the natural rainfall event than the model of topographic elevation-rainfall. However this model require to supplement a small number of rainfall observatories and short observed period.

키워드

참고문헌

  1. 류종인, 방익찬 (1997). '제주지방의 집중호우 경향 분석.' 제주대 해양연구논문집, 제주대학교해양연구소, 제21권, pp. 113-123
  2. 류정인 (1998). 제주도 지방의 집중호우 경향과 사례연구. 석사학위논문, 제주대학교
  3. Duckstein, L., Fogel, M.M. and Thames, J.L. (1973). 'Elevation effects on rainfall: A stochastic model.' Journal of Hydrology, Vol. 18, pp. 21-35 https://doi.org/10.1016/0022-1694(73)90023-1
  4. Hanson, C.L., and Johnson, G.L. (1993). 'Spatial and temporal precipitation characteristics in Southwest Idaho.' Management of Irrigation and Drainage Systems: Integrated Perspectives, ASCE, pp. 394-401
  5. Johnson, G.L., and Hanson, C.L. (1995). 'Topographic and atmospheric influences on precipitation variability over a mountainous watershed.' Journal of Applied Meteorology, Vol. 34, pp. 68-87 https://doi.org/10.1175/1520-0450(1995)034<0068:TOAIOP>2.0.CO;2
  6. Karneili, A., and Osborn, H. (1988). 'Factors affecting seasonal and annual precipitation in Arizona.' Hydrology and Water Resources in Arizona and the Southwest, The University of Arizona, Vol. 18, pp. 7-18
  7. Michaud, J.D., Auvine, B.A., and Penalba, O.C. (1995). 'Spatial and elevational variations of summer rainfall in the Southwestern United States.' Journal of Applied Meteorology, Vol. 34, pp. 2689-2703 https://doi.org/10.1175/1520-0450(1995)034<2689:SAEVOS>2.0.CO;2
  8. Suzuki, Y., Nakakita, E., and Ikebuchi, S. (2002). 'A Study of Dependence properties of rainfall distribution on topographic elevation.' Journal of Hydroscience and Hydraulic Engineering, Vol. 20, No.1, pp. 1-11
  9. Suzuki, Y., Nakakita, E., Hasebe, M., and Ikebuchi, S. (2004). 'Study on rainfall-topography relationships in japan with regard to the spatial scale of mountain slopes.' Sixth International Symposium on Hydrological Applications of Weather Radar, Melbourne, Australia, Poster Session 1

피인용 문헌

  1. Vertical Variation of Z-R Relationship at Hallasan Mountain during Typhoon Nakri in 2014 vol.2017, 2017, https://doi.org/10.1155/2017/1927012
  2. Orographic Precipitation Analysis with Regional Frequency Analysis and Multiple Linear Regression vol.42, pp.6, 2009, https://doi.org/10.3741/JKWRA.2009.42.6.465
  3. Analysis on Characteristics of Orographic Effect about the Rainfall Using Radar Data: A Case Study on Chungju Dam Basin vol.48, pp.5, 2015, https://doi.org/10.3741/JKWRA.2015.48.5.393
  4. The Optimal Spatial Analysis of Precipitation in the Region of Gangwon vol.12, pp.1, 2012, https://doi.org/10.9798/KOSHAM.2012.12.1.179
  5. Calibrating Radar Data in an Orographic Setting: A Case Study for the Typhoon Nakri in the Hallasan Mountain, Korea vol.8, pp.12, 2017, https://doi.org/10.3390/atmos8120250