Speckle Noise Reduction in SAR Images using Wavelet Transform

SAR 영상에서 웨이블렛 변환을 이용한 스펙클 잡음제거 방법

  • 임동훈 (경상대학교 정보통계학과)
  • Published : 2007.07.31

Abstract

It is difficult to analyse images because of multiplicative characteristics of speckle noises in SAR images. In this paper. wavelet transform is proposed for restoring SAR images corrupted by speckle noise. The multiplicative noise is transformed into a form of additive noise and then the additive noise is denoised using wavelet thresholding selections such as VisuShrink, SureShrink, BayesShrink and modified BayesShrink. Experimental results on several test images show that the modified BayesShrink yields significantly superior image quality and better Peak Signal to Noise Ratio(PSNR).

SAR 영상은 스펙클 잡음의 승법(multiplicative) 특성으로 인하여 영상 분석하는데 많은 어려움이 있다. 본 논문에서는 웨이블렛 변환을 사용하여 SAR 영상의 스펙클 잡음을 제거하고자 한다. 이를 위해 잡음영상에 대해 로그를 취해 얻은 가법(additive) 잡음 영상에서 웨이블렛 분해 한 후 잡음 성분을 제거하고 원영상을 얻기 위해 지수형태를 취한다. 웨이블렛 변환에서 임계치 처리는 소프트 임계법을 사용하고 VisuShrink, SureShrink, BayesShrink 그리고 수정된 BayesShrink 방법으로 임계값을 선택한다. 영상실험을 통하여 이들 임계값 선택 방법들 간의 비교는 수정된 BayesShrink 방법이 다른 방법들보다 좋은 영상의 질을 유지하고 있으며 또한 PSNR 면에서 좋은 잡음제거 성능을 갖고 있음을 알 수 있었다.

Keywords