DOI QR코드

DOI QR Code

Microwave Properties and Microstructures of (Ba,Sr)TiO3 Thin Films on Various Substrates with Annealing Temperature

다양한 기판위에 증착된 BST 박막의 열처리 온도에 따른 마이크로파 유전성질과 미세구조 변화

  • Cho, Kwang-Hwan (Thin Film Materials Research Center, Korea Institute of Science & Technology) ;
  • Kang, Chong-Yun (Thin Film Materials Research Center, Korea Institute of Science & Technology) ;
  • Yoon, Seok-Jin (Thin Film Materials Research Center, Korea Institute of Science & Technology) ;
  • Kim, Hyun-Jai (Thin Film Materials Research Center, Korea Institute of Science & Technology)
  • 조광환 (한국과학기술연구원 박막재료연구센타) ;
  • 강종윤 (한국과학기술연구원 박막재료연구센타) ;
  • 윤석진 (한국과학기술연구원 박막재료연구센타) ;
  • 김현재 (한국과학기술연구원 박막재료연구센타)
  • Published : 2007.07.27

Abstract

The dielectric properties of $(Ba_{0.5}Sr_{0.5})TiO_3$ ferroelectric thin films have been investigated according to the substrates in order to optimize the their properties. MgO, r-plane sapphire, and poly-crystalline sapphire (Alumina) substrates have been used to deposite $(Ba_{0.5}Sr_{0.5})TiO_3$ ferroelectric thin films by RF magnetron sputtering. The BST thin films deposited on the single crystal (100)MgO substrates have high tunability and low dielectric loss. These results are caused by a low misfit between the lattice parameters of the BST films and the substrate. The BST films deposited on r-plane sapphire have relatively high misfit, and the tunability of 17% and dielectric loss of 0.0007. To improve the dielectric properties of the BST films, the post-annealing methods has been introduced. The BST films deposited on (100)MgO, (1102)r-plane sapphire, and poly-crystalline sapphire substrates have best properties in post-annealing conditions of $1050^{\circ}C$, $1100^{\circ}C$, and $1150^{\circ}C$, respectively. The different optimal post-annealing conditions have been found according to the different misfits between the films and substrates, and thermal expansion coefficients. Moreover, the films deposited on alumina substrate which is relatively cheap have a good tunability properties of 23% by the post-annealing.

Keywords

References

  1. W. Stephen Cheung and Frederic H. Levien, Microwave Made Simple: Principles and Application, Artech House, (1985)
  2. F. A. Miranda, G Subramanyam, F. W. Van Keuls, R. R. Romanofsky, J. D. Warne and C. H. Muller, IEEE Troms. Microwave Theory Tech., 48(7), 1181 (2000) https://doi.org/10.1109/22.853458
  3. Chong-Yun Kang, Seok-Jin Yoon, and Hyun-Jai Kim, J. of KIEEME, 18(6), 532 (2005)
  4. M. J. Lancaster, J. Powell, and A. Porch, Supercond. Sci. Technol., 11(11), 1323 (1998) https://doi.org/10.1088/0953-2048/11/11/021
  5. Jong-Yoon Ha, Ji-Won Choi, Chong-Yun Kang, S. F. Karmanenko, Seok-Jin Yoon, Doo-Jin Choi and Hyun-Jai Kim, Jpn, J. Appl. Phys., 44(38), L1196 (2005) https://doi.org/10.1143/JJAP.44.L1196
  6. T. L. Rose, E. M. Kelliher, A. N. Scoville and S. E. Stone, J. Appl. Phys., 55(10), 3706 (1984) https://doi.org/10.1063/1.332923
  7. P. Li, J. F. McDonald and T. M. Lu, J. Appl. Phys., 71(11), 5596 (1992) https://doi.org/10.1063/1.350538
  8. B. S. Kwak, K. Zhang, E. P. Boyd, A. Erbil and B. J. Wilkens, J. Appl. Phys., 69(2), 767 (1991) https://doi.org/10.1063/1.347362
  9. Alexander Tagantsev, Appl. Phys. Letts., 76, 1182 (2000) https://doi.org/10.1063/1.125976
  10. O. G Vendik, S. P. Zubbko, M. A. Nikolski and Zh. Tekh. Fiz. Tech. Phys., 44, 4 (1999)
  11. K. H. Cho, J. Y. Ha, J W. Choi, J.S. Kim, S. J. Yoon and C. Y. Kang. J. Korean Phys. Soc., 49(3), 1076 (2006)