Characterization of β-glucosidase from Brown Rot Fungus, Laetiporus sulphureus

  • Lee, Jae-Won (Dept. of Forest Science, College of Agriculture & Life Sciences, Seoul National University) ;
  • Park, Jun-Yeong (Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Gwak, Ki-Seob (Dept. of Forest Science, College of Agriculture & Life Sciences, Seoul National University) ;
  • Koo, Bon-Wook (Dept. of Forest Science, College of Agriculture & Life Sciences, Seoul National University) ;
  • Choi, In-Gyu (Dept. of Forest Science, College of Agriculture & Life Sciences, Seoul National University)
  • Received : 2007.06.27
  • Accepted : 2007.08.06
  • Published : 2007.09.25

Abstract

$\beta$-Glucosidase from Laetiporus sulphureus among the enzymes related to lignocellulosic biomass degradation to sugars for using alternative bioethanol production was characterized. The highest activity of $\beta$-glucosidase was obtained on cellobiose at shaking culture. For the characterization and purification of $\beta$-glucosidase culture solution was concentrated and then purified by FPLC using ion exchange and size exclusion column. According to the results of SDS-PAGE, native PAGE and microfluidic system of purified enzyme, protein band was observed at about 132 kDa. Optimal pH and temperature of purified $\beta$-glucosi-dase were 5.0 and $60^{\circ}C$, respectively. In the kinetic properties of $\beta$-glucosidase on various substrates such as sophorose, gentiobiose and cellobiose, $K_m$ was 0.81, 1.07 and 1.70 mM, respectively.

Keywords

References

  1. Bao, W., E. Lymar, and V. Renganathan. 1994. Optimization of cellobiose dehydrogenase and $\beta$-glucosidase production by cellulose-degrading cultures of Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 42: 642-646 https://doi.org/10.1007/BF00173933
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Coughlan, M. P. 1988. Staining techniques for the etection of the individual components of cellulolytic enzyme systems. Methods Enzymol. 160: 135-144 https://doi.org/10.1016/0076-6879(88)60114-5
  4. Eriksson, K. E. L., R. A. Blanchette, and P. Andder. 1990. Wood degradation by white-rot fungi, p. 20-43. Microbial and enzymatic degradation of wood and wood components. SpringerVerlag, Berlin
  5. Gabriel, O. and M. Gersten. 1992. Staining fro enzymatic activity after gel electrophoresis. I. Anal. Biochem. 203: 1-21 https://doi.org/10.1016/0003-2697(92)90036-7
  6. Igarashi, K., M. Samejima, Y. Saburi, N. Habu, and K. E. T. Eriksson. 1997. Localization of cellobiose dehydrogenase in cellulose grown cultures of Phanerochaete chrysosporium. Fungal genetics and biology 21: 214-222 https://doi.org/10.1006/fgbi.1996.0954
  7. Igarashi, K., T. Tani, R. Kawai, and M. Samejima. 2003. Family 3 $\beta$-glucosidase from cellulose-degrading culture of the white rot fungus Phanerochaete chrysosporium is a glucan 1,3-$\beta$-glucosidase. J. Biosci. Bioeng. 96(6): 572-576 https://doi.org/10.1016/S1389-1723(04)70151-6
  8. Kawai, R., K. Igarahi, M. Kitaoka, T. Ishii, and M. Samejima. 2004. Kinetics of substrate transglycosylation by glycoside hydrolase family 3 glucan (1-3)-$\beta$-glucosidase from the white rot fungus Phanerochaete chrysosporium. Carbohydr. Res. 339: 2851-2857 https://doi.org/10.1016/S0008-6215(03)00609-8
  9. Kremer, S. M. and P. M. Wood. 1992a. Evidence that cellobiose oxidase from Phanerochaete chrysosporium is primarily an Fe(ill) reductase. Eur. J. Biochem. 205: 133-138 https://doi.org/10.1111/j.1432-1033.1992.tb16760.x
  10. Kwon, K. S., J. H. Lee, H. G. Kang, and Y. C. Han. 1994. Detection of $\beta$-glucosidase activity in polyacrylamide gels with esculin as substrate. Appl. Environ. Microbiol. 60(12): 4584-4586
  11. Li, X. and R. E. Calza. 1991. Kinetic study of a cellobiase purified from Neocallimastix frontalis EB188. Biochem. Biophys. Acta. 1080: 148-154 https://doi.org/10.1016/0167-4838(91)90142-M
  12. Selby, K. and C. C. Maitland. 1965. The fractionation of Myrothercium verrucaria cellulase by gel filtration. Biochem. J. 94: 578-583 https://doi.org/10.1042/bj0940578
  13. Machuca, A. and A. Ferraz. 2001. Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme Microb. Technol. 29:386-391 https://doi.org/10.1016/S0141-0229(01)00417-3
  14. Shewale, J. G. 1982. $\beta$-Glucosidase: its role in cellulase synthesis and hydrolysis of celllulase. Int. J. Biochem. 14: 435-443 https://doi.org/10.1016/0020-711X(82)90109-4
  15. Umile, C. and C. P. Kubicek. 1986. A constitutive, plasma-membrane bound $\beta$-glucosidase in Trichoderma ressei. Eur. J. Biochem. 34: 291-295
  16. Withers, S. G. 2001. Mechanism of glycosyl transferases and hydro lases. Carbohydr. Polym. 44: 325-337 https://doi.org/10.1016/S0144-8617(00)00249-6
  17. Yang, J. K. and C. H. Kim. 2001. Changes of carbohydrate composition and enzyme adsorption on the hydrolysis of steam exploded wood by cellulase. Mokchae Konghak 29(4): 67-78
  18. Zechel, D., S. P. Reid, D. Stoll, O. Nashiru, R. A. J. Warren, and S. G. Withers. 2003. Mechanism, Mutagenesis, and Chemical rescue of a $\beta$-mannosidase from Cellulomonas fimi. Biochemisty 42: 7195-7204 https://doi.org/10.1021/bi034329j