참고문헌
- Baek, J. G., Kim, C. O., and Kim, S. S. (2002), Online learing of the cause-and-effect knowledge of a manufacturing process, International Journal of Production Research, 40(14), 3275-3290 https://doi.org/10.1080/00207540210146921
- Barna, G. G. (1992), Automatic problem detection and documentation in a plasma etch reactor, IEEE Transactions on Semiconductor Manufacturing, 5(I), 56-59 https://doi.org/10.1109/66.121979
- Berndt, D. J. and Clifford, J. (1996), Finding Patterns in Time Series: A Dynamic Programming Approach. Advances in Knowledge Discovery and Data Mining, The MIT Press, 229-248
- Dolins, S. B. and Reese, J. D. (1992), A Curve Interpretation and Diagnostic Technique for Industrial Processes, IEEE Transactions on Industry Application, 28(1), 261-267 https://doi.org/10.1109/28.120240
- Dolins, S. B., Spivasrava, A., and Flinchbaugh, B. E. (1988), Monitoring and Diagnosis of Plasma Etch Processes, IEEE Transactions of Semiconductor Manufacturing, 1(1), 23-27 https://doi.org/10.1109/66.4369
- Goodlin, B. E., Boning, D. S., Sawin, H. H., and Wise, B. M. (2003), Simultaneous Fault Detection and Classification for Semiconductor Manufacturing Tools, Journal of Electrochemical Society, 150(2), 778-784 https://doi.org/10.1149/1.1623772
- Guo, H. -F., Spanos, C. J., and Miller, A. J. (1991), Real time statistical process control for plasma etching, In Proceedings of IEEE/SEMI International Semiconductor Manufacturing Science Symposium, 113-118
- Hong, S. J. and May, G. S. (2004), Neural Network-Based Real-Time Malfunction Diagnosis of Reactive Ion Etching Using In Situ Metrology Data, IEEE Transaction on Semiconductor Manufacturing, 17(3), 408-421 https://doi.org/10.1109/TSM.2004.831952
- International Technology Roadmap for Semiconductors (ITRS) (2005)Metrology
- Iwai, H., Kakushima, K, and Wong, H. (2005), Challenges for future semiconductor manufacturing, International Journal of high Speed Electronics and systems, 16(1), 43-81 https://doi.org/10.1142/S0129156406003539
- John, P. W. M. (1990), Statistical Methods in Engineering and Quality Assurance, Wiley-Interscience, 144-163
- Kassidas, A., MacGregor, J. F., and Taylor, P. A. (1998), Synchronization of Batch Trajectories Using Dynamic Time Warping, AIChE Journal, 44(4), 864-875 https://doi.org/10.1002/aic.690440412
- Kim, B. and May, G. S. (1997), Real-Time Diagnosis of Semiconductor Manufacturing Equipment Using Neural Networks, IEEE Transasaion on Components, Packaging and Manufacturing Technology-Part C, 20(1), 39-47 https://doi.org/10.1109/3476.585143
- Lada, E. E., Lu, J -C, and Wilson, J. R. (2002), A Wavelet-Based Procedure for Process Fault, IEEE Transactions on Semiconductor Manufacturing, 15(1), 79-90 https://doi.org/10.1109/66.983447
- Rabiner, L., Rosenberg, A., and Levinson, S. (1978), Considerations in dynamic time warping algorithms for discrete word recognition, IEEE Acoustics, Speech, and Signal Processing, 26(6), 575-582 https://doi.org/10.1109/TASSP.1978.1163164
- Sakoe, H., and Chiba, S. (1978), Dynamic Programming Algorithm Optimization for Spoken Word Recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP, 26(1), 43-49 https://doi.org/10.1109/TASSP.1978.1163055
- Salvador, S., Chan, P., and Brodie, J. (2004), Learning States and Rules for Time Series Anomaly Detection. In Proceedings of the 17th International Florida Artificial Intelligence Research Symposium
- Su, V-C., Hung, M-H., Cheng, F-T., and Chen, Y-T. (2006), A Processing Quality Prognostics Scheme for Plasma Sputtering in TFT-LCD Manufacturing, IEEE Transaction on Semiconductor mannfacturing, 19(2), 183-194 https://doi.org/10.1109/TSM.2006.873514