Characteristics of Ionic Composition of Rainwater in Suwon

수원지역 빗물의 이온 조성

  • Lee, Jong-Sik (National Institute of Agricultural Science and Technology, RDA) ;
  • Jung, Goo-Bok (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Jin-Ho (National Institute of Agricultural Science and Technology, RDA) ;
  • Kim, Won-Il (National Institute of Agricultural Science and Technology, RDA) ;
  • Lee, Jeong-Taek (National Institute of Agricultural Science and Technology, RDA)
  • 이종식 (농업과학기술원 환경생태과) ;
  • 정구복 (농업과학기술원 환경생태과) ;
  • 김진호 (농업과학기술원 환경생태과) ;
  • 김원일 (농업과학기술원 환경생태과) ;
  • 이정택 (농업과학기술원 환경생태과)
  • Received : 2007.01.25
  • Accepted : 2007.03.15
  • Published : 2007.04.30

Abstract

The issue of acid precipitation and related environmental problems in East Asia have been emerging. To evaluate the acidity and chemical characteristics of rainwater in Korea, its chemical properties during crop cultivation season from April to October were investigated at Suwon, Korea. Also, to estimate the contribution of ions on its acidity, ion composition characteristics and neutralization effects by cation ions were determined. Ion balance and electrical conductivity balance between the measured and estimated values showed high correlation. Rainwater had distributed highly in the range of pH 4.5~5.6. The pH of rainwater was relatively high at June as compared with other monitoring periods. $Na^+$ was the main cation followed by $NH_4{^+}$, $Ca^{2+}$, $H^+$ > $K^+$ > $Mg^{2+}$. Among these, $Na^+$, $NH_4{^+}$, $Ca^{2+}$ and $H^+$ covered over 93% of total cations. About 86% of anion in rainwater was composed of $SO{_4}^{2-}$ and $NO_3{^-}$. In rainwater samples, $NH_4{^+}$ and $Ca^{2+}$ contributed greatly to neutralization of the rain acidity. Also, 88% of soluble sulfate in rainwater was nss-$SO{_4}^{2-}$(non-sea salt sulfate).

수원지역에서 영농기간 중 강우의 화학적 특성을 알아보기 위하여 2005년 4월부터 10월까지 39점의 빗물을 채수하여 pH 및 화학적 성분조성을 조사하였다. 강우량을 고려한 가중평균(volume-weighted mean) 이온농도 변화와 알카리성 물질들에 의한 빗물의 산성도 중화를 평가한 결과는 다음과 같다. 시료분석의 신뢰성을 검토한 이온균형과 전기전도도 수지 평가에서는 각각 높은 상관을 나타내어 분석 이온들에 대한 신뢰가 인정되었다. 조사기간 동안 빗물의 pH 분포는 pH 4.5~5.6 범위가 많았으며, 월별로는 6월이 다른 조사기간에 비해 높았다. 강우량와 빗물의 EC 관계에서는 강우량이 증가한 5월 이후 낮은 EC값을 보이다가 강우량이 적었던 10월부터 다시 증가하는 경향을 보였다. 빗물의 조성에서 양이온 구성은 $Na^+$ > $NH^{4+}$, $Ca^{2+}$, $H^+$ > $K^+$ > $Mg^{2+}$의 순이었으며, $Na^+$, $NH_4{^+}$, $Ca^{2+}$$H^+$가 전체 양이온 함량의 93% 이상을 차지하였다. 음이온은 $SO{_4}^{2-}$ > $NO_3{^-}$ > $Cl^-$ 순으로 $SO{_4}^{2-}$$NO_3{^-}$가 약 86%를 차지하였다. 조사기간 중 강우 산성도 중화는 6월이 다른 기간에 비해 높았음을 보였다. 총 sulfate 함량 중 nss-$SO{_4}^{2-}$ 함량은 88%로 빗물중에 함유된 sulfate의 대부분이 인위적인 발생원에서 기인되었다.

Keywords

References

  1. APHA, AWWA, WEF. 1995. Standard methods for the examination of water and wastewater. 4:36-90
  2. Charron, A., H. Plaisance, S. Sauvage, P. Coddeville, J.C. Galloo, and R. Guillermo 2000. A study of the source-receptor relationships influencing the acidity of precipitation collected at a rural site in France. Atmospheric Environment 34:3665-3674 https://doi.org/10.1016/S1352-2310(00)00096-0
  3. Christian, E. J. 1963. Air chemistry and radioactivity. Academic Press. 327-330
  4. Contardi, V., E. Franceschi, S. Bosio, G. Zanicchi, D. Palazzi, L. Cortessogno, and L. Gaggero. 2000. On the conservation of architectural artistic handwork of the 'Pietra di Finale'. J. of Cultural Heritage 2:83-90
  5. Cronan, C.S. and C.L. Schofield. 1979. Aluminum leaching response to acid precipitation: Effects on high-elevation watersheds in the Northeast. Science 204(20):304-306 https://doi.org/10.1126/science.204.4390.304
  6. Fujita, S.I., A. Takahashi, J.H. Weng, L.F. Huang, H.K. Kim, C.K. Li, F.T. Huang, and F.T. Jeng. 2000. Precipitation chemistry in East Asia. Atmospheric Environment 34:525-537 https://doi.org/10.1016/S1352-2310(99)00261-7
  7. Galloway, J. N., D. Zhao, J. Xiong, and G.E. Likens. 1987. Acid rain: China, United States, and a remote area. Science 236:1559-1562 https://doi.org/10.1126/science.236.4808.1559
  8. Jakobowicz, J. M. 1994. Acid rain- An issue for regional cooperation. Acid rain. Gordon & Breach Science Publishers p.129-156
  9. Johnston, J. W., D.S. Jr. Shriner, C.I. Klarer, and D.M. Lodge. 1982. Effect of rain pH on senescence, growth, and yield of bush bean. Environmental and Experimental Botany 22(3):329-337 https://doi.org/10.1016/0098-8472(82)90025-9
  10. Johnston, D.W., and G.E. Taylor. 1989. Role of air pollution in forest decline in eastern North America. Water, Air, and soil Pollution 48:21-43
  11. Kondo, J. 1991. The ozone hole problems. Proceedings of the 2nd IUAPPA regional conference on air pollution (Vol. 1) p.17-22
  12. Lee, J.S., G.B. Jung, J.D. Shin, and J.H. Kim. 2004. Chemical properties of rainwater in Suwon and Taean area during farming season. Korean J. of Agricultural and Forest Meteorology 6(4):250-255. (in Korean with English abstract)
  13. Lee, J.S., B.Y. Kim, J.H. Kim, and S.G. Hong. 1999. Chemical composition of rainwater in Suwon and Ansung area. Korean J. of Environmental Agriculture 18(2):169-173. (in Korean with English abstract)
  14. Lee, J.S., B.Y. Kim., K.D. Woo, and G.B. Jung 1993. Study on histological pertubations of leaves of sesame after exposure to simulated acid rain. J. of Korean Society of Soil Science and Fertilizer 26(4):308-313. (in Korean with English abstract)
  15. Lee, J.S., J.H. Kim, G.B. Jung, and K.C. Eom. 2003. Volume-weighted ion concentration of rainwater in Suwon area during farming season. Korean J. of Agricultural and Forest Meteorology 5(1):1-5. (in Korean with English abstract)
  16. Lee, J.S., and K.S. Lee. 2000. Neutralization Assessment of $NH_{4}^{+}$ and $Ca^{2+}$ on Acidity of Rainwater in Korea. Korean J. of Environmental Agriculture 19(1):72-74. (in Korean with English abstract)
  17. Likens, G.E., J.N. Galloway, and T.J. Butler. 1979. Acid rain. Scientific American 241(4):39-47
  18. Okochi, H., H. Kameda, S. Hasegawa, N. Saito, K. Kubota, and M. Igawa. 2000. Determination of concrete structures by acid deposition- An assessment of the role of rainwater on deterioration by laboratory and field exposure experiments using mortar specimens. Atmospheric Environment 34:2937-2945 https://doi.org/10.1016/S1352-2310(99)00523-3
  19. Park, S.U., Y.H. Lee, and H.J In. 2000. Estimation of wet deposition of sulfate using routinely available meterological data and airmonitored data in Korea. Atmospheric Environment 34:3249-3258 https://doi.org/10.1016/S1352-2310(00)00099-6
  20. Peart, M.R. 2000. Acid rain, storm period chemistry and their potential impact on stream communities in Hong Kong. Chemosphere 41:25-31 https://doi.org/10.1016/S0045-6535(99)00386-0
  21. Rinallo, C. 1992; Effects of acidity of simulated rain on the fruiting of 'summerred' apple trees J. Environ. Qual. 21:61-68 https://doi.org/10.2134/jeq1992.00472425002100010009x
  22. Scorer, R.S., 1994. Long distance transport. Acid rain. Gordon & Breach Science Publishers p.1-34
  23. Taniyama, T. and H. Saito. 1981. Effects of acid rain on apparent photosynthesis and grain yield of wheat, barley and rice plant. Rept. Environmental Sci. Mie Univ. 6:87-101
  24. Takuya, K., K. Yoshishisa, and N. Keiichi. 1992. The effects of simulated acid rain on the uptake of mineral elements in soybean plants. J. Agr. Met. 48(1):11-18 https://doi.org/10.2480/agrmet.48.11