Region-Based Reconstruction Method for Resolution Enhancement of Low-Resolution Facial Image

저해상도 얼굴 영상의 해상도 개선을 위한 영역 기반 복원 방법

  • 박정선 (전남대학교 멀티미디어)
  • Published : 2007.05.15

Abstract

This paper proposes a resolution enhancement method which can reconstruct high-resolution facial images from single-frame, low-resolution facial images. The proposed method is derived from example-based reconstruction methods and the morphable face model. In order to improve the performance of the example-based reconstruction, we propose the region-based reconstruction method which can maintain the characteristics of local facial regions. Also, in order to use the capability of the morphable face model to face resolution enhancement problems, we define the extended morphable face model in which an extended face is composed of a low-resolution face, its interpolated high-resolution face, and the high-resolution equivalent, and then an extended face is separated by an extended shape vector and an extended texture vector. The encouraging results show that the proposed methods can be used to improve the performance of face recognition systems, particularly to enhance the resolution of facial images captured from visual surveillance systems.

본 논문에서는 영역 기반 복원 방법을 통하여 한 장의 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 복원하는 방법을 제안한다. 제안된 방법은 예제 기반 복원과 얼굴 영상을 형태 정보와 질감 정보로 나누어 표현하는 변형 가능 얼굴 모형에 기반한다. 먼저, 예제 기반 복원 방법의 성능을 개선하기 위하여, 전역 복원 결과와 국부적 복원 결과를 결합하는 영역 기반 복원 방법을 제안한다. 또한, 변형 가능 얼굴 모형의 장점을 해상도 복원에 적용하기 위하여, 확장된 변형 가능 얼굴 모형을 정의한다. 제안된 모형에서 얼굴 영상은 저해상도 얼굴 영상, 보간법을 통해 개선한 고해상도 얼굴 영상, 그리고 원래의 고해상도 얼굴 영상의 쌍으로 구성되며, 이는 다시 확장된 형태 정보와 확장된 질감 정보로 나뉜다. 다양한 실험을 통하여, 제안된 방법이 저해상도 얼굴 영상으로부터 고해상도 얼굴 영상을 효과적으로 복원함을 입증하였으며, 이 방법을 사용하여 원거리 감시 시스템에서 획득된 저해상도 얼굴 영상을 고해상도 얼굴 영상으로 합성함으로써, 얼굴 인식 시스템의 성능을 높일 수 있는 가능성을 확인하였다.

Keywords

References

  1. S. Baker and T. Kanade, 'Limits on Super-Resolution and How to Break Them,' IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 24, No. 9, pp. 1167-1183, 2002 https://doi.org/10.1109/TPAMI.2002.1033210
  2. S.C. Park, M.K. Park, and M.G. Kang, 'Super-Resolution Image Reconstruction: A Technical Overview,' IEEE Signal Processing Magazine, Vol. 20, No. 3, pp. 21-36, 2003 https://doi.org/10.1109/MSP.2003.1203207
  3. X. Wang and X. Tang, 'Hallucinating Face by Eigentransform,' IEEE Trans. on Systems, Man and Cybernetics-Part C: Applications and Reviews, Vol. 35, No. 3, pp. 425-434, 2005 https://doi.org/10.1109/TSMCC.2005.848171
  4. G. Dedeoglu, T. Kanade, and J. August, 'High-Zoom Video Hallucination by Exploiting SpatioTemporal Regularities,' IEEE Conf. on Computer Vision and Pattern Recognition, Vol. 2, pp. 151-158, 2004 https://doi.org/10.1109/CVPR.2004.1315157
  5. F. Dekeyser, P. Perez, and P. Bouthemy, 'Restoration of Noisy, Blurred, Undersampled Image Sequences Using Parametric Motion Model,' Int. Symposium on Image/Video Communications over Fixed and Mobile Networks, ISIVC 2000, Rabat, Morocco, pp. 1071-1073, April 2000
  6. R. C. Hardie, K. J. Barnar, and E. E. Armstrong, 'Joint Map Registration and High-Resolution Image Estimation Using a Sequence of Under-sampled Images,' IEEE Trans. on Image Processing, Vol. 6, No. 12, pp. 1621-1633, 1997 https://doi.org/10.1109/83.650116
  7. W. T. Freeman, T. R. Jones, and E. C. Pasztor, 'Example-based Super-Resolution,' Technical Report 2001-30, MERL - A Mitsubishi Electric Research Laboratory, August 2001
  8. B. K. Gunturk, A. U. Batur, Y. Altunbasak, M. H. Hayes, and R. M. Mersereau, 'Eigenface-Domain Super-Resolution for Face Recognition,' IEEE Trans. on Image Processing, Vol. 12, No. 5, pp. 597 -606, 2003 https://doi.org/10.1109/TIP.2003.811513
  9. C. Liu, H.-Y. Shum and C.-S. Zhang, 'A Two-Step Approach to Hallucinating Faces: Global Parametric Model and Local Nonparametric Model,' IEEE Conf. on Computer Vision and Pattern Recognition, Vol. 1, pp. 192-198, December 2001 https://doi.org/10.1109/CVPR.2001.990475
  10. Y. Li and X. Lin, 'An Improved Two-Step Approach to Hallucinating Faces,' IEEE Conf. on Image and Graphics, pp. 298-301, December 2004 https://doi.org/10.1109/ICIG.2004.35
  11. H. Sato, W. Freeman and A. Onozawa, 'Quality Improvement for Intermediate Views Using Example-Based Super-Resolution,' NTT Technical Review, Vol. 1, No. 6, pp. 44-47, September 2003
  12. T. A. Stephenson and T. Chen, 'Adaptive Markov Random Fields for Example-based Super-Resolution of Faces,' EURASIP Journal on Applied Signal Processing. Vol. 2006, Article ID 31062, pp. 1-11, 2006 https://doi.org/10.1155/ASP/2006/31062
  13. T. Vetter and N. E. Troje, 'Separation of Texture and Shape in Images of Faces for Image Coding and Synthesis,' Journal of the Optical Society of America A, Vol. 14, No. 9, pp. 2152-2161, 1997 https://doi.org/10.1364/JOSAA.14.002152
  14. B.-W. Hwang and S.-W. Lee, 'Reconstruction of Partially Damaged Face Images Based on a Morphable Face Model,' IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, No. 3, pp. 365-372, 2003 https://doi.org/10.1109/TPAMI.2003.1182099
  15. V. Blanz and T. Vetter, 'Face Recognition Based on Fitting a 3D Morphable Model,' IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, No. 9, pp. 1063-1074, 2003 https://doi.org/10.1109/TPAMI.2003.1227983
  16. B. Tom and A. Katsaggelos, 'Resolution Enhancement of Monochrome and Color Video Using Motion Compensation,' IEEE Trans. on Image Processing, Vol. 10, No. 2, pp. 278-287,2001 https://doi.org/10.1109/83.902292
  17. W. Liu, D. Lin, and X. Tang, 'Neighbor Combination and Transformation for Hallucinating Faces,' IEEE Conf. on Multimedia and Expo, pp. 145-148, July 2005 https://doi.org/10.1109/ICME.2005.1521381
  18. B.-W. Hwang, M.-C. Roh, and S.-W. Lee, 'Performance Evaluation of Face Recognition Algorithms on Asian Face Recognition,' IEEE Int. Conf. on Automatic Face and Gesture Recognition, Seoul, Korea, pp. 278-283, May 2004 https://doi.org/10.1109/AFGR.2004.1301544
  19. http://www.ee.surrey.ac.uk/CVSSP/xrn2vtsdb/