워크플로우 분할에 기반한 복합 웹 서비스의 빠른 선택

Fast Selection of Composite Web Services Based on Workflow Partition

  • 장재호 (연세대학교 컴퓨터과학) ;
  • 신동훈 (연세대학교 컴퓨터과학) ;
  • 이경호 (연세대학교 컴퓨터과학)
  • 발행 : 2007.05.15

초록

복합 웹 서비스 선택은 서비스의 기능만을 명시한 추상 워크플로우에 바인딩 정보를 추가하여 주어진 QoS 요구사항을 만족하는 복합 웹 서비스를 구성하는 과정이다. 웹 서비스의 급격한 증가와 QoS가 동적으로 변하는 웹 서비스 환경을 고려할 때 주어진 QoS 요구사항을 만족하는 복합 웹 서비스의 빠른 선택이 중요하다. 본 논문은 워크플로우 분할에 기반하여 복합 웹 서비스를 빠르게 선택하는 방법을 제안한다. 제안된 방법은 추상 워크플로우를 두 개의 서브 워크플로우로 분할하여 선택 과정에서 고려되는 후보 서비스의 수를 줄인다. 분할된 워크플로우의 QoS 요구사항은 원래의 QoS 요구사항을 분해함으로서 생성한다. QoS 요구사항의 분해는 휴리스틱에 기반하기 때문에 워크플로우 분할 시 적절한 복합 웹 서비스를 선택하지 못할 가능성이 있다. 이러한 실패를 줄이기 위해 주어진 QoS 요구사항의 제약정도를 정의하고 적절한 제약정도를 가지는 요구사항에 한해 워크플로우를 분할한다. 서비스 선택은 mixed integer linear programming을 이용하여 해결한다. 실험 결과 제안된 워크플로우 분할 방법은 99% 이상의 성공률을 보였다. 특히 워크플로우 분할 시 모든 경우에 대해서 복합 웹 서비스를 보다 빠르게 선택하였으며 이때 선택된 복합 웹 서비스의 QoS는 최적 서비스와 5%미만의 차이를 보였다.

Executable composite Web services are selected by binding a given abstract workflow with the specific Web services that satisfy given QoS requirements. Considering the rapidly increasing number of Web services and their highly dynamic QoS environment, the fast selection of composite services is important. This paper presents a method for quality driven comosite Web services selection based on a workflow partition strategy. The proposed method partitions an abstract workflow into two sub-workflows to decrease the number of candidate services that should be considered. The QoS requirement is also decomposed for each partitioned workflow. Since the decomposition of a QoS requirement is based on heuristics, the selection might fail to find composite Web services. To avoid such a failure, the tightness of a QoS requirement is defined and a workflow is determined to be partitioned according to the tightness. A mixed integer linear programming is utilized for the efficient service selection. Experimental results show that the success rate of partitioning is above 99%. Particularly, the proposed method performs faster and selects composite services whose qualities are not significantly different (less than 5%) from the optimal one.

키워드

참고문헌

  1. W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver, Combinatorial Optimization , p. 355, John Wiley & Sons, New York, 1998
  2. L. A. Wolsey, G. L. Nemhauser, Interger and Combinatorial Optimization, 1st Ed., p. 763, Wiley Interscience, 1999
  3. S. Ran, 'A model for web services discovery with QoS,' ACM SIGecom Exchanges, Vol. 4, No. 1, pp. 1-10, 2003 https://doi.org/10.1145/844357.844360
  4. S. Kalepu, S. Krishnaswamy, and S.W. Loke, 'Verity: a QoS metric for selecting web services and providers,' Proc. 4th Int'l Conf. WISE Workshops, pp. 131-139, 2003 https://doi.org/10.1109/WISEW.2003.1286795
  5. E. M. Maximilien and M. P. Singh, 'Conceptual Model of Web Service Reputation,' ACM SIGMOD Record, Vol. 31, No .4, pp. 36-41,2002 https://doi.org/10.1145/637411.637417
  6. M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J. Schiller, 'A concept for QoS integration in web services,' Proc. Int'l Conf. 4th WISE, pp. 149-155, 2003 https://doi.org/10.1109/WISEW.2003.1286797
  7. A. S. Bilgin and M. P. Singh, 'A DAML-based repository for QoS-aware semantic web service selection,' Proc. Int'l Conf. IEEE Web Services, pp. 368-375, 2004 https://doi.org/10.1109/ICWS.2004.1314759
  8. E. M. Maximilien and M. P. Singh, 'A Framework and Ontology for Dynamic Web Services Selection,' Internet Computing, Vol. 8, No. 5, pp. 84-93, 2004 https://doi.org/10.1109/MIC.2004.27
  9. A. Gao, D. Yang, S. Tang, and M. Zhang, 'QoS-Driven Web Service Composition with Inter Service Conflicts,' Proc. 8th APWeb Conf. (LNCS 3841), pp. 121-132, 2006 https://doi.org/10.1007/11610113_12
  10. Y. Chen, Z. Li, Q. Jin, and C. Wang, 'Study on QoS Driven Web Services Composition,' Proc. 8th APWeb Conf. (LNCS 3841), pp. 702-707, 2006 https://doi.org/10.1007/11610113_61
  11. S. Liu, Y. Liu, N. Jing, G. Tang, and Y. Tang, 'A Dynamic Web Service Selection Strategy with QoS Global Optimization Based on Multi-objective Genetic Algorithm,' Proc. 4th Int 'l Conf on Grid and Cooperative Computing (LNCS 3795), pp. 84-89, 2005 https://doi.org/10.1007/11590354_10
  12. L. Yang, Y. Dai, B. Zhang, and Y. Gao, 'Dynamic Selection of Composite Web Services Based on a New Structured TCNN,' Proc. IEEE Int'l Workshop on Service-Oriented System Engineering, pp. 149-158, 2005 https://doi.org/10.1109/SOSE.2005.12
  13. G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani, 'An Approach for QoS-aware Service Composition based on Genetic Algorithms,' Proc. Conf. Genetic and Evolutionary Computation, pp. 1069-1075, 2005 https://doi.org/10.1145/1068009.1068189
  14. R. Gronmo and M. C. Jaeger, 'Model-Driven Methodology for Building QoS-Optimized Web Service Compositions,' Proc. 5th Int 'I Conf. on DAIS (LNCS 3543), pp. 68-82, 2005 https://doi.org/10.1007/11498094_7
  15. T. Yu and K. Lin, 'Service selection algorithms for web services with end-to-end QoS constraints,' Proc. IEEE Int'l Conf. e-Commerce Technology, pp. 129-136, 2004 https://doi.org/10.1109/ICECT.2004.1319726
  16. J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, 'Quality of Service for Workflows and Web Service Processes,' Web Semantics Journal, Vol. 1, No. 3, pp. 281-308, 2004 https://doi.org/10.1016/j.websem.2004.03.001
  17. L. Zeng, B. Benatallah, A. H. H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang, 'QoS-Aware Middleware for Web Services Composition,' IEEE Trans. on Software Engineering, Vol. 30, No. 5, pp. 311-327, 2004 https://doi.org/10.1109/TSE.2004.11
  18. O. H. Ibarra, and C.-E. Kim, 'Fast approximation algorithms for the knapsack and sum of subset problems,' Journal of the ACM, Vol. 22, No. 4, pp. 463-468, 1975 https://doi.org/10.1145/321906.321909
  19. M. Pinedof, Scheduling: Theory, Algorithms, and Systems, 2nd Ed., p. 586, Prentice Hall, 2001
  20. C. L. Hwang and K. Yoon, 'Multiple Attribute Decision Making,' Lecture Notes in Economics and Mathematical Systems, Vol. 186, 1981