References
- Y.-C. Chenh, L.-Q. Ye, F. Chuang, and W.-Y. Cai, 'Anthropomorphic intelligent PID control and its application in the hydro turbine governor,' Proc. of Int. Conf. on Machine Learning & Cybernetics, Beijing, China, pp. 391-395, 2002 https://doi.org/10.1109/ICMLC.2002.1176782
- F. Karray, W. Gueaieb, and S. Al-Sharhan, 'The hierarchical expert tuning of PID controllers using tools of soft computing,' IEEE Trans. on Systems. Man. and Cybernetics-Part B: Cybernetics, vol. 32, no. 1, pp. 77-90, 2002 https://doi.org/10.1109/3477.979962
- S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, NJ, 1999
- B. Kosko, Fuzzy Engineering, Prentice Hall, Upper Saddle River, NJ, 1997
- D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Professional. 1989
- D, Dasgupta, Artificial Immune Systems and Their Applications. Springer. 1998
- Y. Yu, H. Ying, and Z. Bi, 'The dynamic fuzzy method to tune the weight factors of neural fuzzy PID controller,' Proc. of IEEE lnt. Joint Conf. on Neural Networks, Budapest, Hungary, pp. 2397-2402, 2004
- M. Guzelkaya, I. Eksin, and E. Yesil, 'Self-tuning of PID fuzzy logic controller coefficients via relative rate observer,' Engineering Application of Artificial Intelligence, vol. 16, pp. 227-236, 2003 https://doi.org/10.1016/S0952-1976(03)00050-2
- D. D. Kukolj, S. B. Kuzmanovic, and E. Levi, 'Design of a PlD-like compound fuzzy logic controller,' Engineering Application of Artificial Intelligence, vol. 14, pp. 785-803, 2001 https://doi.org/10.1016/S0952-1976(02)00014-3
- L. Tian, 'Intelligent self-tuning of PID control for the robotic testing system for human musculoskeletal joints test,' Annals of Biomedical Engineering, vol. 32, no. 6, pp. 899-909, 2004 https://doi.org/10.1023/B:ABME.0000030759.80354.e8
- G. M. Khoury, M. Saad, H. Y. Kanaan, and C. Asmar, 'Fuzzy PID control of a five DOF robot arm,' J. of Intelligent & Rohotic Systems, vol. 40, pp. 299-320, 2004 https://doi.org/10.1023/B:JINT.0000038947.97195.22
- G. Tan, H. Xiao, and Y. Wang, 'Optimal fuzzy PID controller with adjustable factors and its application to intelligent artificial legs,' High Technology Letters, vol. 10, no. 2, pp. 73-77, 2004
- L. Reznik, O. Ghanayem, and A. Sounnistrov, 'PID plus fuzzy controller structures as design base for industrial applications,' Engineering Application of Artificial Intelligence, vol. 13, pp. 419-430, 2000 https://doi.org/10.1016/S0952-1976(00)00013-0
- T. R. Rangaswamy, J. Shanmugam, and K. P. Mohammed, 'Adaptive fuzzy tuned PID controller for combustion of utility boiler,' Control & Intelligent Systems, vol. 33, no. 1, pp. 63-71, 2005 https://doi.org/10.2316/Journal.201.2005.1.201-1562
- A. S. Zayed, A. Hussain, and M. .J. Grimble, 'A nonlinear PID-based multiple controller incorporating a multilayered neural network learning submodel,' Control & Intelligent Systems, vol. 34, no. 3, pp. 177-184, 2006 https://doi.org/10.2316/Journal.201.2006.3.201-1499
- H. Shu and Y. Pi, 'PID neural networks for time-delay systems,' Computer & Chemical Engineering, vol. 24, pp. 859-862, 2000 https://doi.org/10.1016/S0098-1354(00)00340-9
- D. Garg and N. Gulati, 'Neural network based intelligent control and PID control of a magnetic levitation system,' Proc. of ASME Dynamic Systems and Control Division, New Orleans, LA, pp. 1013-1020, 2002
- C. Riverol and V. Napolitano, 'Use of neural networks as a tuning method for an adaptive PID application in a heat exchanger,' Institution of Chemical Engineers, vol. 78, Part A, pp. 1115-1119, 2000 https://doi.org/10.1205/026387600528391
- M. Faradadi, A. S. Ghafari, and S. K. Hannani, 'PID neural network control of SUT building energy management system,' Proc. of IEEE/ASME Int. Conf .on Advanced Intelligent Mechatronics, Monterey, CA, pp. 682-686, 2005 https://doi.org/10.1109/AIM.2005.1511061
- G. Zhenhai and Z. So, 'Vehicle lane keeping of adaptive PID control with BP neural network self-tuning,' Proc. of IEEE Intelligent Vehicle Symposium, Las Vegas, NV, pp. 84-87, 2005 https://doi.org/10.1109/IVS.2005.1505082
- M. Trusca and G. Lazea, 'An adaptive PID learning controller for periodic robot motion,' Proc. ol IEEE Conf. on Control Applications, Istanbul, Turkey, pp. 686-689, 2003
- R. A. Krohling and .J. P. Rey, 'Design of optimal disturbance rejection PID controllers using Genetic algorithm,' IEEE Trans. on Evolutionary Computation, vol. 5, no. 1, pp. 78-82, 2001 https://doi.org/10.1109/4235.910467
- D. S. Pereira and J. O. Pinto, 'Genetic algorithm based system identification and PID tuning for optimum adaptive control,' Proc. of IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Monterey, CA, pp. 801-806, 2005 https://doi.org/10.1109/AIM.2005.1511081
- Y. J. Lee, H. C. Cho, and K. S. Lee, 'Immune algorithm based active PID control for structure systems,' J. of Mechanical Science & Technology, vol. 20, no. 11, pp. 1823-1833, 2006 https://doi.org/10.1007/BF03027576
- G. F. Franklin, J. D. Powell, and A. Emami-Nacini, Feedback Control of Dynamic Systems, Prentice Hall, Upper Saddle River, NJ, 2006
- M. Saerens and A. Soquet, 'Neural controller based on back-propagation algorithm,' lEE Proceedings - F, vol. 138, no. 1, pp. 55-62, 1991
- S. Ablameyko, M. Gori, L. Goras, and V. Piuri, editors, Impact of Neural Networks on Signal Processing and Communications, of Limitations and Future Trends in Neural Computation, NATO Science Series, 2003
- T. M. Mitchell, Machine Learning, McGraw-Hill International Editions, 1997
- H. C. Cho, 'Dynamic Bayesian networks for online stochastic modeling,' Ph.D. Dissertation, University of Nevada-Reno, 2006
- K. Murphy, 'Dynamic Bayesian networks: Representation, Inference and Learning.' Ph. D. Dissertation, University of California-Berkeley, 2002
- T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, Upper Saddle River, NJ, 2000
- P. Baldi and Y. Chauvin, 'Smooth on-line learning algorithm for hidden Markov models,' Neural Computation, vol. 6, no. 2, pp. 307-318, 1994 https://doi.org/10.1162/neco.1994.6.2.307
- V . Jacobson and M. Karels, 'Congestion avoidance and control,' Proc. of ACM SIGCOMM, pp. 314-329, 1988 https://doi.org/10.1145/52325.52356
- S. Floyd and V. Jacobson, 'Random early detection gateways for congestion avoidance,' IEEE/ACM Trans. on Networking, vol. 1, no. 4, pp. 397-413, 1993 https://doi.org/10.1109/90.251892
- C. V. Hollot, V. Misra, D. Towsley, and W. Gong, 'Analysis and design of controllers for AQM routers supporting TCP flows,' IEEE Trans. on Automatic Control, vol. 47, no. 6, pp. 945-959, 2002 https://doi.org/10.1109/TAC.2002.1008360
- K. B. Kim and S. H. Low, 'Analysis and design of AQM based on state-space models for stabilizing TCP,' Proc. oj' American Control Conference, pp. 260-265, 2003 https://doi.org/10.1109/ACC.2003.1238948
- R. A. DeCarlo, S. H. Zak, and G. P. Mattews, 'Variable structure control of nonlinear multivariable systems: A tutorial,' Proc. of the IEEE, vol. 76, no. 3, pp. 212-232, 1998 https://doi.org/10.1109/5.4400
- R. Fengyuan, L. Chuang, Y. Xunhe, S. Xiuming, and W. Fubao, 'A robust active queue management algorithm based on sliding mode variable structure control,' Proc. of lEEE INFOCOM, pp. 13-20, 2002 https://doi.org/10.1109/INFCOM.2002.1019241
- H. C. Cho, M. S. Fadali, and H. Lee, 'Neural network control for TCP network congestion,' Proc. ol American Control Conference, pp, 3480-3485, 2005 https://doi.org/10.1109/ACC.2005.1470511
- Y. H. Aoul, A Nafaa, D. Negru, and A. Mchaoua, 'FAFC: fast adaptive fuzzy AQM controller for TCP/IP networks,' IEEE Global Telecommunications Conf., pp. 1319-1323, 2004 https://doi.org/10.1109/GLOCOM.2004.1378200