DOI QR코드

DOI QR Code

An Intelligent PID Controller based on Dynamic Bayesian Networks for Traffic Control of TCP

TCP의 트래픽 제어를 위한 동적 베이시안 네트워크 기반 지능형 PID 제어기

  • 조현철 (동아대학교 전기공학과) ;
  • 이영진 (한국폴리텍 항공대학 항공전기과) ;
  • 이진우 (동아대학교 전기공학과) ;
  • 이권순 (동아대학교 전기공학과)
  • Published : 2007.04.01

Abstract

This paper presents an intelligent PID control for stochastic systems with nonstationary nature. We optimally determine parameters of a PID controller through learning algorithm and propose an online PID control to compensate system errors possibly occurred in realtime implementations. A dynamic Bayesian network (DBN) model for system errors is additionally explored for making decision about whether an online control is carried out or not in practice. We apply our control approach to traffic control of Transmission Control Protocol (TCP) networks and demonstrate its superior performance comparing to a fixed PID from computer simulations.

Keywords

References

  1. Y.-C. Chenh, L.-Q. Ye, F. Chuang, and W.-Y. Cai, 'Anthropomorphic intelligent PID control and its application in the hydro turbine governor,' Proc. of Int. Conf. on Machine Learning & Cybernetics, Beijing, China, pp. 391-395, 2002 https://doi.org/10.1109/ICMLC.2002.1176782
  2. F. Karray, W. Gueaieb, and S. Al-Sharhan, 'The hierarchical expert tuning of PID controllers using tools of soft computing,' IEEE Trans. on Systems. Man. and Cybernetics-Part B: Cybernetics, vol. 32, no. 1, pp. 77-90, 2002 https://doi.org/10.1109/3477.979962
  3. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, NJ, 1999
  4. B. Kosko, Fuzzy Engineering, Prentice Hall, Upper Saddle River, NJ, 1997
  5. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Professional. 1989
  6. D, Dasgupta, Artificial Immune Systems and Their Applications. Springer. 1998
  7. Y. Yu, H. Ying, and Z. Bi, 'The dynamic fuzzy method to tune the weight factors of neural fuzzy PID controller,' Proc. of IEEE lnt. Joint Conf. on Neural Networks, Budapest, Hungary, pp. 2397-2402, 2004
  8. M. Guzelkaya, I. Eksin, and E. Yesil, 'Self-tuning of PID fuzzy logic controller coefficients via relative rate observer,' Engineering Application of Artificial Intelligence, vol. 16, pp. 227-236, 2003 https://doi.org/10.1016/S0952-1976(03)00050-2
  9. D. D. Kukolj, S. B. Kuzmanovic, and E. Levi, 'Design of a PlD-like compound fuzzy logic controller,' Engineering Application of Artificial Intelligence, vol. 14, pp. 785-803, 2001 https://doi.org/10.1016/S0952-1976(02)00014-3
  10. L. Tian, 'Intelligent self-tuning of PID control for the robotic testing system for human musculoskeletal joints test,' Annals of Biomedical Engineering, vol. 32, no. 6, pp. 899-909, 2004 https://doi.org/10.1023/B:ABME.0000030759.80354.e8
  11. G. M. Khoury, M. Saad, H. Y. Kanaan, and C. Asmar, 'Fuzzy PID control of a five DOF robot arm,' J. of Intelligent & Rohotic Systems, vol. 40, pp. 299-320, 2004 https://doi.org/10.1023/B:JINT.0000038947.97195.22
  12. G. Tan, H. Xiao, and Y. Wang, 'Optimal fuzzy PID controller with adjustable factors and its application to intelligent artificial legs,' High Technology Letters, vol. 10, no. 2, pp. 73-77, 2004
  13. L. Reznik, O. Ghanayem, and A. Sounnistrov, 'PID plus fuzzy controller structures as design base for industrial applications,' Engineering Application of Artificial Intelligence, vol. 13, pp. 419-430, 2000 https://doi.org/10.1016/S0952-1976(00)00013-0
  14. T. R. Rangaswamy, J. Shanmugam, and K. P. Mohammed, 'Adaptive fuzzy tuned PID controller for combustion of utility boiler,' Control & Intelligent Systems, vol. 33, no. 1, pp. 63-71, 2005 https://doi.org/10.2316/Journal.201.2005.1.201-1562
  15. A. S. Zayed, A. Hussain, and M. .J. Grimble, 'A nonlinear PID-based multiple controller incorporating a multilayered neural network learning submodel,' Control & Intelligent Systems, vol. 34, no. 3, pp. 177-184, 2006 https://doi.org/10.2316/Journal.201.2006.3.201-1499
  16. H. Shu and Y. Pi, 'PID neural networks for time-delay systems,' Computer & Chemical Engineering, vol. 24, pp. 859-862, 2000 https://doi.org/10.1016/S0098-1354(00)00340-9
  17. D. Garg and N. Gulati, 'Neural network based intelligent control and PID control of a magnetic levitation system,' Proc. of ASME Dynamic Systems and Control Division, New Orleans, LA, pp. 1013-1020, 2002
  18. C. Riverol and V. Napolitano, 'Use of neural networks as a tuning method for an adaptive PID application in a heat exchanger,' Institution of Chemical Engineers, vol. 78, Part A, pp. 1115-1119, 2000 https://doi.org/10.1205/026387600528391
  19. M. Faradadi, A. S. Ghafari, and S. K. Hannani, 'PID neural network control of SUT building energy management system,' Proc. of IEEE/ASME Int. Conf .on Advanced Intelligent Mechatronics, Monterey, CA, pp. 682-686, 2005 https://doi.org/10.1109/AIM.2005.1511061
  20. G. Zhenhai and Z. So, 'Vehicle lane keeping of adaptive PID control with BP neural network self-tuning,' Proc. of IEEE Intelligent Vehicle Symposium, Las Vegas, NV, pp. 84-87, 2005 https://doi.org/10.1109/IVS.2005.1505082
  21. M. Trusca and G. Lazea, 'An adaptive PID learning controller for periodic robot motion,' Proc. ol IEEE Conf. on Control Applications, Istanbul, Turkey, pp. 686-689, 2003
  22. R. A. Krohling and .J. P. Rey, 'Design of optimal disturbance rejection PID controllers using Genetic algorithm,' IEEE Trans. on Evolutionary Computation, vol. 5, no. 1, pp. 78-82, 2001 https://doi.org/10.1109/4235.910467
  23. D. S. Pereira and J. O. Pinto, 'Genetic algorithm based system identification and PID tuning for optimum adaptive control,' Proc. of IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, Monterey, CA, pp. 801-806, 2005 https://doi.org/10.1109/AIM.2005.1511081
  24. Y. J. Lee, H. C. Cho, and K. S. Lee, 'Immune algorithm based active PID control for structure systems,' J. of Mechanical Science & Technology, vol. 20, no. 11, pp. 1823-1833, 2006 https://doi.org/10.1007/BF03027576
  25. G. F. Franklin, J. D. Powell, and A. Emami-Nacini, Feedback Control of Dynamic Systems, Prentice Hall, Upper Saddle River, NJ, 2006
  26. M. Saerens and A. Soquet, 'Neural controller based on back-propagation algorithm,' lEE Proceedings - F, vol. 138, no. 1, pp. 55-62, 1991
  27. S. Ablameyko, M. Gori, L. Goras, and V. Piuri, editors, Impact of Neural Networks on Signal Processing and Communications, of Limitations and Future Trends in Neural Computation, NATO Science Series, 2003
  28. T. M. Mitchell, Machine Learning, McGraw-Hill International Editions, 1997
  29. H. C. Cho, 'Dynamic Bayesian networks for online stochastic modeling,' Ph.D. Dissertation, University of Nevada-Reno, 2006
  30. K. Murphy, 'Dynamic Bayesian networks: Representation, Inference and Learning.' Ph. D. Dissertation, University of California-Berkeley, 2002
  31. T. K. Moon and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing, Prentice Hall, Upper Saddle River, NJ, 2000
  32. P. Baldi and Y. Chauvin, 'Smooth on-line learning algorithm for hidden Markov models,' Neural Computation, vol. 6, no. 2, pp. 307-318, 1994 https://doi.org/10.1162/neco.1994.6.2.307
  33. V . Jacobson and M. Karels, 'Congestion avoidance and control,' Proc. of ACM SIGCOMM, pp. 314-329, 1988 https://doi.org/10.1145/52325.52356
  34. S. Floyd and V. Jacobson, 'Random early detection gateways for congestion avoidance,' IEEE/ACM Trans. on Networking, vol. 1, no. 4, pp. 397-413, 1993 https://doi.org/10.1109/90.251892
  35. C. V. Hollot, V. Misra, D. Towsley, and W. Gong, 'Analysis and design of controllers for AQM routers supporting TCP flows,' IEEE Trans. on Automatic Control, vol. 47, no. 6, pp. 945-959, 2002 https://doi.org/10.1109/TAC.2002.1008360
  36. K. B. Kim and S. H. Low, 'Analysis and design of AQM based on state-space models for stabilizing TCP,' Proc. oj' American Control Conference, pp. 260-265, 2003 https://doi.org/10.1109/ACC.2003.1238948
  37. R. A. DeCarlo, S. H. Zak, and G. P. Mattews, 'Variable structure control of nonlinear multivariable systems: A tutorial,' Proc. of the IEEE, vol. 76, no. 3, pp. 212-232, 1998 https://doi.org/10.1109/5.4400
  38. R. Fengyuan, L. Chuang, Y. Xunhe, S. Xiuming, and W. Fubao, 'A robust active queue management algorithm based on sliding mode variable structure control,' Proc. of lEEE INFOCOM, pp. 13-20, 2002 https://doi.org/10.1109/INFCOM.2002.1019241
  39. H. C. Cho, M. S. Fadali, and H. Lee, 'Neural network control for TCP network congestion,' Proc. ol American Control Conference, pp, 3480-3485, 2005 https://doi.org/10.1109/ACC.2005.1470511
  40. Y. H. Aoul, A Nafaa, D. Negru, and A. Mchaoua, 'FAFC: fast adaptive fuzzy AQM controller for TCP/IP networks,' IEEE Global Telecommunications Conf., pp. 1319-1323, 2004 https://doi.org/10.1109/GLOCOM.2004.1378200