• Title/Summary/Keyword: DBN model

Search Result 23, Processing Time 0.021 seconds

Nonlinear structural model updating based on the Deep Belief Network

  • Mo, Ye;Wang, Zuo-Cai;Chen, Genda;Ding, Ya-Jie;Ge, Bi
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.729-746
    • /
    • 2022
  • In this paper, a nonlinear structural model updating methodology based on the Deep Belief Network (DBN) is proposed. Firstly, the instantaneous parameters of the vibration responses are obtained by the discrete analytical mode decomposition (DAMD) method and the Hilbert transform (HT). The instantaneous parameters are regarded as the independent variables, and the nonlinear model parameters are considered as the dependent variables. Then the DBN is utilized for approximating the nonlinear mapping relationship between them. At last, the instantaneous parameters of the measured vibration responses are fed into the well-trained DBN. Owing to the strong learning and generalization abilities of the DBN, the updated nonlinear model parameters can be directly estimated. Two nonlinear shear-type structure models under two types of excitation and various noise levels are adopted as numerical simulations to validate the effectiveness of the proposed approach. The nonlinear properties of the structure model are simulated via the hysteretic parameters of a Bouc-Wen model and a Giuffré-Menegotto-Pinto model, respectively. Besides, the proposed approach is verified by a three-story shear-type frame with a piezoelectric friction damper (PFD). Simulated and experimental results suggest that the nonlinear model updating approach has high computational efficiency and precision.

Reliable Fault Diagnosis Method Based on An Optimized Deep Belief Network for Gearbox

  • Oybek Eraliev;Ozodbek Xakimov;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.54-63
    • /
    • 2023
  • High and intermittent loading cycles induce fatigue damage to transmission components, resulting in premature gearbox failure. To identify gearbox defects, numerous vibration-based diagnostics techniques, using several artificial intelligence (AI) algorithms, have recently been presented. In this paper, an optimized deep belief network (DBN) model for gearbox problem diagnosis was designed based on time-frequency visual pattern identification. To optimize the hyperparameters of the model, a particle swarm optimization (PSO) approach was integrated into the DBN. The proposed model was tested on two gearbox datasets: a wind turbine gearbox and an experimental gearbox. The optimized DBN model demonstrated strong and robust performance in classification accuracy. In addition, the accuracy of the generated datasets was compared using traditional ML and DL algorithms. Furthermore, the proposed model was evaluated on different partitions of the dataset. The results showed that, even with a small amount of sample data, the optimized DBN model achieved high accuracy in diagnosis.

Application of Cluster Distributions to Energy Transfer in Two-Dimensional Choleic Acid Crystals

  • 박치헌;송추윤;우희권;최용국;국성근
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.630-634
    • /
    • 1995
  • The cluster distributions for different concentrations of 1,4-dibromonaphthalene (DBN) in 4,4'-dibromobenzophenone (DBBP)/1,4-dibromonaphthalene (DBN) choleic acid were determined by a computer simulation in order to model the energy transfer dynamics. The results of the simulation indicate that long range interaction between molecules further apart than nearest does not occur and energy transfer efficiency is restricted by single range interaction. The results also demonstrate that the trapping is diffusion limited. The energy transfer rate is reduced by a factor of 15 in DBBP/DBN choleic acid realtive to that in DBBP/DBN doped into polystyrene due to the larger distance between molecules.

Multiaspect-based Active Sonar Target Classification Using Deep Belief Network (DBN을 이용한 다중 방위 데이터 기반 능동소나 표적 식별)

  • Kim, Dong-wook;Bae, Keun-sung;Seok, Jong-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.3
    • /
    • pp.418-424
    • /
    • 2018
  • Detection and classification of underwater targets is an important issue for both military and non-military purposes. Recently, many performance improvements are being reported in the field of pattern recognition with the development of deep learning technology. Among the results, DBN showed good performance when used for pre-training of DNN. In this paper, DBN was used for the classification of underwater targets using active sonar, and the results are compared with that of the conventional BPNN. We synthesized active sonar target signals using 3-dimensional highlight model. Then, features were extracted based on FrFT. In the single aspect based experiment, the classification result using DBN was improved about 3.83% compared with the BPNN. In the case of multi-aspect based experiment, a performance of 95% or more is obtained when the number of observation sequence exceeds three.

Could Decimal-binary Vector be a Representative of DNA Sequence for Classification?

  • Sanjaya, Prima;Kang, Dae-Ki
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.8-15
    • /
    • 2016
  • In recent years, one of deep learning models called Deep Belief Network (DBN) which formed by stacking restricted Boltzman machine in a greedy fashion has beed widely used for classification and recognition. With an ability to extracting features of high-level abstraction and deal with higher dimensional data structure, this model has ouperformed outstanding result on image and speech recognition. In this research, we assess the applicability of deep learning in dna classification level. Since the training phase of DBN is costly expensive, specially if deals with DNA sequence with thousand of variables, we introduce a new encoding method, using decimal-binary vector to represent the sequence as input to the model, thereafter compare with one-hot-vector encoding in two datasets. We evaluated our proposed model with different contrastive algorithms which achieved significant improvement for the training speed with comparable classification result. This result has shown a potential of using decimal-binary vector on DBN for DNA sequence to solve other sequence problem in bioinformatics.

Design of Time-varying Stochastic Process with Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M.Sami;Lee, Kwon-Soon
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.543-548
    • /
    • 2007
  • We present a dynamic Bayesian network (DBN) model of a generalized class of nonstationary birth-death processes. The model includes birth and death rate parameters that are randomly selected from a known discrete set of values. We present an on-line algorithm to obtain optimal estimates of the parameters. We provide a simulation of real-time characterization of load traffic estimation using our DBN approach.

Android Malware Detection using Machine Learning Techniques KNN-SVM, DBN and GRU

  • Sk Heena Kauser;V.Maria Anu
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.202-209
    • /
    • 2023
  • Android malware is now on the rise, because of the rising interest in the Android operating system. Machine learning models may be used to classify unknown Android malware utilizing characteristics gathered from the dynamic and static analysis of an Android applications. Anti-virus software simply searches for the signs of the virus instance in a specific programme to detect it while scanning. Anti-virus software that competes with it keeps these in large databases and examines each file for all existing virus and malware signatures. The proposed model aims to provide a machine learning method that depend on the malware detection method for Android inability to detect malware apps and improve phone users' security and privacy. This system tracks numerous permission-based characteristics and events collected from Android apps and analyses them using a classifier model to determine whether the program is good ware or malware. This method used the machine learning techniques KNN-SVM, DBN, and GRU in which help to find the accuracy which gives the different values like KNN gives 87.20 percents accuracy, SVM gives 91.40 accuracy, Naive Bayes gives 85.10 and DBN-GRU Gives 97.90. Furthermore, in this paper, we simply employ standard machine learning techniques; but, in future work, we will attempt to improve those machine learning algorithms in order to develop a better detection algorithm.

Parameter Learning of Dynamic Bayesian Networks using Constrained Least Square Estimation and Steepest Descent Algorithm (제약조건을 갖는 최소자승 추정기법과 최급강하 알고리즘을 이용한 동적 베이시안 네트워크의 파라미터 학습기법)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon;Koo, Kyung-Wan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.164-171
    • /
    • 2009
  • This paper presents new learning algorithm of dynamic Bayesian networks (DBN) by means of constrained least square (LS) estimation algorithm and gradient descent method. First, we propose constrained LS based parameter estimation for a Markov chain (MC) model given observation data sets. Next, a gradient descent optimization is utilized for online estimation of a hidden Markov model (HMM), which is bi-linearly constructed by adding an observation variable to a MC model. We achieve numerical simulations to prove its reliability and superiority in which a series of non stationary random signal is applied for the DBN models respectively.

An Intelligent PID Controller based on Dynamic Bayesian Networks for Traffic Control of TCP (TCP의 트래픽 제어를 위한 동적 베이시안 네트워크 기반 지능형 PID 제어기)

  • Cho, Hyun-Choel;Lee, Young-Jin;Lee, Jin-Woo;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.286-295
    • /
    • 2007
  • This paper presents an intelligent PID control for stochastic systems with nonstationary nature. We optimally determine parameters of a PID controller through learning algorithm and propose an online PID control to compensate system errors possibly occurred in realtime implementations. A dynamic Bayesian network (DBN) model for system errors is additionally explored for making decision about whether an online control is carried out or not in practice. We apply our control approach to traffic control of Transmission Control Protocol (TCP) networks and demonstrate its superior performance comparing to a fixed PID from computer simulations.

A Soccer Video Analysis Using Product Hierarchical Hidden Markov Model (PHHMM(Product Hierarchical Hidden Markov Model)을 이용한 축구 비디오 분석)

  • Kim, Moo-Sung;Kang, Hang-Bong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.681-682
    • /
    • 2006
  • 일반적으로 축구 비디오 데이터는 멀티모달과 멀티레이어 속성을 지닌다. 이러한 데이터를 다루기 적합한 모델은 동적 베이지안 네트워크(Dynamic Bayesian Network: DBN) 형태의 위계적 은닉 마르코프 모델(Hierarchical Hidden Markov Model: HHMM)이다. 이러한 HHMM 중 다중속성의 특징들이 서로 상호작용하는 PHHMM(Product Hierarchical Hidden Markov Model)이 있다. 본 논문에서는 PHHMM 을 축구 경기의 Play/Break 이벤트 검색 및 분석에 적용하였고 바람직한 결과를 얻었다.

  • PDF