References
- 이승천 (2005). 이항비율의 가중 Polys posterior 구간추정, <응용통계 연구>, 18, 607-615 https://doi.org/10.5351/KJAS.2005.18.3.607
- 이승천 (2006). 독립표본에서 두 모비율의 차이에 대한 가중 Polya 사후분포 신뢰구간, <응용통계연구>, 19, 171-181 https://doi.org/10.5351/KJAS.2006.19.1.171
- Agresti, A. and Coull, B. A. (1998). Approximation is better than 'exact' for interval estimation of binomial proportions, The American Statistician, 52, 119-126 https://doi.org/10.2307/2685469
- Agresti, A. and Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures, The American Statistician, 54, 280-288 https://doi.org/10.2307/2685779
- Agresti, A. and Min, Y. (2005). Simple improved confidence intervals for comparing matched proportions, Statistics in Medicine, 24, 729-740 https://doi.org/10.1002/sim.1781
- Anbar, D. (1983). On estimating the difference between two probabilities, with special reference to clinical trials, Biometrics, 39, 257-262 https://doi.org/10.2307/2530826
- Beal, S. L. (1987). Asymptotic confidence intervals for the difference between two binomial parameters for use with small samples, Biometrics, 43, 941-950 https://doi.org/10.2307/2531547
- Blyth, C. R. and Still, H. A. (1983). Binomial confidence intervals, Journal of the American Statistical Association, 78, 108-116 https://doi.org/10.2307/2287116
- Bonett, D. G. and Woodward, J. A. (1987). Application of Kronecker product and Wald test in log-linear models, Computational Statistics, 3, 235-243
- Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion, Statistical Science, 16, 101-133
- Brown, L. D., Cai, T. T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions, Annals of Statistics, 30. 160-201 https://doi.org/10.1214/aos/1015362189
- Ghosh, B. K. (1979). A comparison of some approximate confidence intervals for the binomial parameter, Journal of the American Statistical Association, 74, 894-900 https://doi.org/10.2307/2286420
- Greenland, S. (2001). Simple and effective confidence intervals for proportions and difference of proportions result from adding two successes and two failures, The American Statistician, 55, 172
- Lee, S.-C. (2007). An improved confidence interval for the population proportion in a double sampling scheme subject to false-positive misclassification, Journal of Korean Statistical Society, 36, 275-284
- Newcombe, R. (1998). Interval estimation for the difference between independent proportions: Comparison of eleven methods, Statistics in Medicine, 17, 873-890 https://doi.org/10.1002/(SICI)1097-0258(19980430)17:8<873::AID-SIM779>3.0.CO;2-I
- Price, R. M. and Bonett, D. G. (2004). An improved confidence interval for a linear function of binomial proportions, Computational Statistics & Data Analysis, 45, 449-456 https://doi.org/10.1016/S0167-9473(03)00007-0
Cited by
- A Bayesian approach to obtain confidence intervals for binomial proportion in a double sampling scheme subject to false-positive misclassification vol.37, pp.4, 2008, https://doi.org/10.1016/j.jkss.2008.05.001