Determination of Flow Direction from Flow Indicators in the Muposan Tuff, Southern and Eastern Cheongsong, Korea

청송 남.동부 무포산응회암의 흐름 지시자로부터 유향 결정

  • Ahn, Ung-San (Department of Earth and Environmental Sciences, Andong National University) ;
  • Hwan, Sang-Koo (Department of Earth and Environmental Sciences, Andong National University)
  • 안웅산 (안동대학교 지구환경과학과) ;
  • 황상구 (안동대학교 지구환경과학과)
  • Published : 2007.06.28

Abstract

The Muposan Tuff is a stratigraphic unit which is distinguished as a cooling unit in the volcanic rocks of the northeastern Kyeongsang Basin. The Muposan Tuff commonly belongs to tuff field according to the granulometric classification and to vitric tuffs according to the constituent classification. The tuffs are mostly densely to partially welded to include very flattened and sometimes stretched pumices and shards, and involve several flow indicator and lateral gradings in maximum diameter and content of their constituents. Movement pattern from flow lineation, lithic and pumice imbrications, asymmetric flow folds, and lateral gradings in maximum diameter and content of their constituents indicate that the Muposan Tuff had a source from the southeastern part.

청송 무포산응회암은 경상분지 북동부 화산암류에서 하나의 냉각단위로 구별되는 층서단위이다. 이 응회암은 그 입도에 의하면 대부분 응회암에 속하고 구성원에 의하면 파리질 응회암에 속한다. 대부분 부석과 샤드가 일정하게 배열되고 심하게 편평화되어 용결엽리를 발달시키며 여러 가지 흐름지시자를 보여준다. 무포산응회암에서 부석 정향배열에 의한 유상선구조로부터 이동 패턴, 암편과 부석의 와상배열, 용결엽리의 비대칭 유상습곡 등의 흐름 지시자, 암편과 부석의 최대입경의 측방점이, 그리고 구성원 함량의 측방점이에 의하면 이 응회암을 집적시킨 화쇄류는 남동부에서 공급되었던 것으로 해석된다.

Keywords

References

  1. Ahn, U.S. (1999) Volcanolgy of Muposan Tuff in the southeastern Cheongsong, Kyeongsangbuk-do. Master thesis, Graduate school, ANU, 58p
  2. Branney, M.J. and Kokelaar, P. (1992) A reappraisal of ignimbrite emplacement: progressive aggradation and changes from particulate to non-particulate flow during emplacement of high-grade ignimbrite. Bull. Volcanol., v. 54, p. 504-520 https://doi.org/10.1007/BF00301396
  3. Branney, M.J. and Kokelaar, B.P. (2002) Pyroclastic Density Currents and the Sedimentation of Ignimbrites. Geological Society Memoir 27. The Geological Society, London, 143p
  4. Cas, R.A.F. and Wright, R.Y. (1987) Volcanic succession, modern and ancient. Chapman and Hall, London, 528p
  5. Chapiri, C.E. and Lowell, G.R. (1979) Primary and secondary flow structures in ash-flow tuffs of the Gribbles run paleovalley, Central Colorado. In Capin and Elston (eds.), Ash-flow tuff, p. 137-154
  6. Deal, E.D. (1973) Geology of the northern part of the San Nateo mountains, Socorro country, New Mexico: A study of a rhyolite ash-flow tuff cauldron and the role of laminar flow in ash-flow tuffs. Ph.D. thesis, University of New Mexico, p. 107-128
  7. Druitt, T.H. (1992) Emplacement of the 18 May 1980 lateral blast deposit ENE of Mount St. Helens, Washington. Bull. Volcanol., v. 54, p. 554-572 https://doi.org/10.1007/BF00569940
  8. Fisher, R. V. (1966) Rock composed of volcanic fragments. Earth. Sci. Rev v. 1, p. 287-298 https://doi.org/10.1016/0012-8252(66)90010-9
  9. Fisher, R.V. (1990) Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens, Washington. Geol. Soc. Am. Bull., v. 102, p. 1038-1054 https://doi.org/10.1130/0016-7606(1990)102<1038:TADOAP>2.3.CO;2
  10. Freundt, A. and Schmincke, H.-U. (1986) Emplacement of small-volume pyroclastic flows at Laacher See (East-Eifel, Germany). Bull. Volcanol., v. 48, p. 39-59 https://doi.org/10.1007/BF01073512
  11. Froggatt, P.C., Wilson, C.J.N. and Walker, G.P.L. (1981) Orientation of logs in the Taupo Ignimbrite as indicator of flow direction and vent position. Geology, v. 9, p. 109-111 https://doi.org/10.1130/0091-7613(1981)9<109:OOLITT>2.0.CO;2
  12. Gibson, I.L. and Tazieff, H. (1967) Additional theory on the origin of fiamme in ignimbrites. Nature, v. 215, p. 1473-1474 https://doi.org/10.1038/2151473a0
  13. Hatae (1936) Geological map of Yeonghae and Yeongdeok Sheet. Geological Survey of Korea, 22p
  14. Hughes, S.R. and Druitt, T.H. (1998) Particle fabric in a small, type-2 ignimbrite flow unit (Laacher See, Germany) and implications for emplacement dynamics. Bull. Volcanol., v. 60, p. 125-136 https://doi.org/10.1007/s004450050221
  15. Hwang, S.K. (1998) Volcanic geology of Juwangsan area, Cheongsong. Guidebook of 1998 Spring Field Excursion, 42p
  16. Hwang, S.K. and Kim, S.H. (2006) Magmatic processes of the Muposan Tuff, southern and eastern Cheongsong, Korea. J. Geol. Soc. Korea, v. 42, p. 253-271
  17. Hwang, S.K., Son, J.D., Lee, B.J. and Reedman, A.J. (2002) Eruptive phases and volcanic processes of the Guamsan caldera, southeastern Cheongsong, Korea. J. Petrol. Soc. Korea, v. 11, p. 74-89
  18. Hwang, S.K., Ahan, U.S. and Kim, S.H. (1999) Volcanology of Muposan Tuff in the southeastern Cheongsong, Kyeongsangbuk-do: Flow indicator and direction. Proceedings of 1999 Annual Congress of the Petrological Societty of Korea, p42
  19. Kim, O.J., Yoon, S. and Gil, Y.J. (1968) Geological map of Cheongha Sheet. Geological Survey of Korea, 16p
  20. Kwon, Y.I. and Lee, I.K. (1973) Geological map of Dopyeong Sheet. Korea Institute of Geology and Minerals, 21p
  21. Lee, H.G. and Hong, S.H. (1973) Geological map of Cheongsong Sheet. Korea Institute of Geology and Minerals, 23p
  22. Le Pennec, J.-L., Bourdier, J.-L., Froger., J.-L., Temel, A., Camus, G. and Gourgaud, A. (1994) Neogene ignimbrites of the Nevsehir plateau (central Turkey): stratigraphy, distribution and source constraints. J. Volcanol. Geotherm. Res., v. 63, p. 59-87 https://doi.org/10.1016/0377-0273(94)90018-3
  23. Miller, T.P. and Smith, R.L. (1977) Spectacular mobility of ash flows around Aniakchak and Fisher calderas, Alaska. Geology, v. 5, p. 173-176 https://doi.org/10.1130/0091-7613(1977)5<173:SMOAFA>2.0.CO;2
  24. Palladino, D.M. and Valentine, G.A. (1995) Coarse-tail vertical and lateral grading in pyroclastic flow deposits of the Latera Volcanic Complex(Vulsini, central Italy): origin and implications for flow dynamics. J. Volcanol. Geotherm. Res., v. 69, p. 343-364 https://doi.org/10.1016/0377-0273(95)00036-4
  25. Pittari, A. and Cas, R.A.F. (2004) Sole Marks atthe base of the late Pleistocene Abrigo Ignimbrite, Tenerife: implications for transport and depositional processes at the base of pyroclastic flows. Bull. Volcano., v. 66: p. 356-363 https://doi.org/10.1007/s00445-003-0317-7
  26. Potter, D.B. and Oberthal, C.M. (1987) Vent sites and flow directions of the Otowi ash flows (lower Bandelier Tuff), New Mexico. Geol. Soc. Am. Bull., v. 98, p. 66-76 https://doi.org/10.1130/0016-7606(1987)98<66:VSAFDO>2.0.CO;2
  27. Ragan, D.M. and Sheridan, M.F. (1972) Compaction of the Bishop Tuff, California.. Geol. Soc. Am. Bull., v. 83, p. 95-106 https://doi.org/10.1130/0016-7606(1972)83[95:COTBTC]2.0.CO;2
  28. Rhodes, R.C. and Smith, E.I. (1972) Distribution and directional fabric of ash-flow sheets in the north-western Mogollon plateau. New Mexico. Geol. Soc. Am. Bull., v. 83, p. 1863-1868 https://doi.org/10.1130/0016-7606(1972)83[1863:DADFOA]2.0.CO;2
  29. Ross, C.S. and Smith, R.L. (1961) Ash-flow tuffs: their origin, geologic relations, and identification. U.S.G.S. Professional Paper 336
  30. Schmincke, H.-U. and Swanson, D.A. (1967) Laminar viscous flowage structures in ash-flow tuffs from Gran Canaria, Canary Islands. J. Geol., v. 75, 641-66 https://doi.org/10.1086/627292
  31. Smith, R.L. (1960) Ash flow. Geol. Soc. Am. Bull., v. 71, p. 795-842 https://doi.org/10.1130/0016-7606(1960)71[795:AF]2.0.CO;2
  32. Sparks, R.S.J. (1975) Stratigraphy and geology of the ignimbrites of Vulsini Volcano, Central Italy. Geol. Rundsch., v. 64, p. 497-523 https://doi.org/10.1007/BF01820680
  33. Suzuki, K. and Ui, T. (1982) Grain orientation and depositional ramps as flow direction indicators of a large-scale pyroclastic flow deposit in Japan. Geology, v. 10, p. 429-432 https://doi.org/10.1130/0091-7613(1982)10<429:GOADRA>2.0.CO;2
  34. Valentine, G.A. (1987) Stratified flow in pyroclastic surges. Bull. Volcanol., v. 49, p. 616-630 https://doi.org/10.1007/BF01079967
  35. Walker, G.P.L. (1981) Volcanological applications of pyroclastic studies. in Self, S. and Sparks, R.S.J. (eds.), Tephra Studies, p. 391-403
  36. Wilson, C.J.N. (1984) The rule of fluidisation in the emplacement of pyroclastic flows, 2: experimental results and their interpretation. J. Volcanol. Geothermo Res., v. 20, p. 55-84 https://doi.org/10.1016/0377-0273(84)90066-0
  37. Wilson, C.J.N. (1985) The Taupo eruption, New Zealand II. The Taupo ignimbrite. Phil. Trans. R Soc. Lond., A.314, p. 229-310 https://doi.org/10.1098/rsta.1985.0020
  38. Wilson, C.J.N. and Walker, G.P.L. (1985) The Taupo eruption, New Zealand I. General aspects. Phil. Trans. R Soc. Lond., A. 314, p. 199-228 https://doi.org/10.1098/rsta.1985.0019
  39. Wolff, J.A. and Wright, J.V. (1981) Rheomorphism of welded tuffs. J, Volcanol. Geotherm. Res., v. 10, p. 13-34 https://doi.org/10.1016/0377-0273(81)90052-4
  40. Wright, J.V. (1980) Stratigraphy and geology of the welded air-fall tuffs of Pantelleria, Italy. Geol. Rundsch., v. 69, p. 263-291 https://doi.org/10.1007/BF01869037
  41. Yokoyama, S. (1974) Flow and emplacement mechanism of the Ito pyroclastic flow from Aira caldera, Japan. Tokyo Kyoiku Daigaku Sci. Rep., C, 12, p. 17-62