• Title/Summary/Keyword: Flow indicator

Search Result 228, Processing Time 0.026 seconds

Evaluation of Residential Street by Pedestrain and Vehicle Occupancy (보행자.차량 점유율에 의한 주택지가로의 평가에 관한 연구)

  • 정헌영
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.2
    • /
    • pp.31-44
    • /
    • 1996
  • This study focuses on the evaluation of the streets on residential areas. For this purpose, pedestrain and vehicle occupancy indicators on residential areas are proposed, and vehicle, pedestrain flow and status of on-street parking on residential streets are analyzed. Also, according to the suggested occupancy indicator, occupancy status of pedestrain and vehicle are identified. At the end, evaluation of residential streets are conducted. The suggested occupancy indicator is a quantitative indicator which can represent the traffic situation on street. It can also be represente din the same dimension among pedestrain, vehicle flow, packed vehicle. Also, occupancy indicator can be utilized for the allocation and evaluation of transportation modes on residential street. Except on-street parking during the day time, moving vehicle occupancy rate contains the more than 80 precent when it is estimated based on the vehicle flow and pedestrain only. As the streets on residential area are occupied by the pedestrain approximately 20 percent during the day time, it is identified quantitatively that the necessity of space for pedestrain.

  • PDF

Analysis of Control Conflict between UPFC Multiple Control Functions and Their Interaction Indicator

  • Wang H. F.;Jazaeri M.;Cao Y. J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.315-321
    • /
    • 2005
  • Interactions among multiple control functions of a UPFC installed in a power system have been observed in power system simulation and been reported in authors' previous publications [1,2]. This paper presents new analytical results about these observed interactions and concludes that they are due to the control conflict between the series and shunt part of the UPFC, which are connected through the internal common capacitor inside the UPFC. Investigation in the paper reveals, for the first time as far as the authors are aware of, that the linkage pattern of UPFC series and shunt part decides whether the control functions implemented by the UPFC series and shunt part conflict each other or not. This linkage pattern of UPFC series and shunt part can be described by the flow of active power through the UPFC at steady-state operation of the power system. Hence in order to predict the possible interactions among multiple control functions of the UPFC, an interaction indicator is proposed in the paper which is the direction and amount of active power flow through the internal link of the UPFC series and shunt part at steady-state operation of the power system. This proposed interaction indicator can be calculated from power system load flow solution without having to run simulation of the power system with UPFC controllers installed. By using the indicator, the interactions among multiple control functions of the UPFC caused by badly set controller's parameters are excluded. Therefore the indicator only identifies the possible existence of inherent control conflict of the UPFC.

Micro-Fabrication and Thermal Characteristics of a Thermal Mass Air Flow Sensor for Real-time Applications (고응답 열식 질량공기유량센서의 제작 및 열거동 특성)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.542-548
    • /
    • 2008
  • A thermal mass air flow sensor (MAFS), which consists of a micro-heater and thermo-resistive sensors on the silicon-nitride ($Si_3N_4$) thin membrane structure, is micro-fabricated by MEMS processes. Two thermo-resistive temperature sensors are located at $100{\mu}m$ upstream and downstream from the micro-heater respectively. The thermal characteristics are measured to find the best measurement indicator. The micro-heater is operated under constant power condition, and four flow indicators are investigated. The normalized temperature indicator shows good physical meaning and is easy to use in practice. It is found that the configurations and heating power of thermal-resistive elements are the dominant factors to determine the range of the flow measurement in the MAFS with higher sensitivity and accuracy.

Determination of Flow Direction from Flow Indicators in the Muposan Tuff, Southern and Eastern Cheongsong, Korea (청송 남.동부 무포산응회암의 흐름 지시자로부터 유향 결정)

  • Ahn, Ung-San;Hwan, Sang-Koo
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.319-330
    • /
    • 2007
  • The Muposan Tuff is a stratigraphic unit which is distinguished as a cooling unit in the volcanic rocks of the northeastern Kyeongsang Basin. The Muposan Tuff commonly belongs to tuff field according to the granulometric classification and to vitric tuffs according to the constituent classification. The tuffs are mostly densely to partially welded to include very flattened and sometimes stretched pumices and shards, and involve several flow indicator and lateral gradings in maximum diameter and content of their constituents. Movement pattern from flow lineation, lithic and pumice imbrications, asymmetric flow folds, and lateral gradings in maximum diameter and content of their constituents indicate that the Muposan Tuff had a source from the southeastern part.

Numerical analysis of local exhaust effectiveness using reverse-flow calculation method (역유동계산법을 이용한 국소배기효율의 수치해석)

  • 한화택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.658-665
    • /
    • 1998
  • This paper investigates local exhaust effectiveness in a room with a supply and an exhaust slots on the ceiling. The mean age of air is an indicator of supply effectiveness, while the mean residual life time can be used as an indicator of exhaust effectiveness. The distribution of local mean residual life time in a space is calculated by four different numerical procedures. The reverse-flow calculation method has been proved to show quite accurate results while it can save considerable amount of computation time and efforts, compared to the method by its original definition. It is concluded that the diffusion term in the equation of mean residual life time can be neglected. The spatial and temporal diffusion characteristics of the contaminant are also discussed.

  • PDF

A Study on the Quantatitive Voltage Stability Index Considering Load Voltage Characteristics (부하의 전압특성을 고려한 정량적 전압안정성 지표에 관한 연구)

  • Jeong, Joon-Mo;Lee, Bong-Yong;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.3-5
    • /
    • 1994
  • It is shown that the power flow considering the voltage characteristic of the composite load has some difference comparing with conventional load flow in this paper. When the load flow is used in a study of the static voltage stability, it is necessary to consider the voltage characteristic of load, since the composite load of a typical power system bas constant power, constant current, and constant impedance characteristic. The load is modeled to a polynomial form in here, and used in solving the load flow problem. In this way, the effect which the voltage characteristic of the load has on several voltage collapse proximity indicator based on sensitivities is compared with the conventional load flow, or with another load model having a different voltage characteristic. In this paper, the voltage collapse proximity indicator using the sensitivity of real power for transmission loss is also proposed, and compared with other indicators.

  • PDF

A Study on Characteristics of Traffic Flow in Congested Traffic at On-Ramp Influence Area (혼잡교통류 상태에서의 연결로 합류부 교통류 특성에 관한 기초 연구)

  • Kim, Sang-Gu;Kim, Young-Ho;Kim, Tae-Wan;Son, Young-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.99-109
    • /
    • 2004
  • Most traffic congestion on a freeway occurs in the merge area, where conflicts between mainline traffic and on-ramp traffic are frequently generated. So far, research on the merge area has mainly dealt with free flow traffic and research on the congested traffic at the merge area is rare. This study investigates the relationships between mainline traffic and on-ramp traffic at three different segments of the merge area. For this purpose, new indicators based on such traffic variables as flow, speed, and density are used. The results show that a negative relationship exists between mainline and on-ramp flow. It is also found that the speed and the density of the right two lanes in the mainline traffic are significantly affected by the on-ramp flow. Based on the correlation analysis of the indicators, it is confirmed that the ramp influence area is the right two lanes of the freeway mainline. The revealed relationships between mainline and on-ramp traffic may help to analyze the capacity of the downstream freeway segment of the merging area in congested traffic. The findings of this studyalso provide a basis to develop a model that estimates the merge traffic volume in congested traffic, which is neither theoretically nor empirically sound in most other traffic flow models developed so far.

Indicator of Motorway Traffic Congestion Speed Based On Individual Vehicular Trips (개별차량 통행기반 고속도로 혼잡 속도 지표 연구)

  • Chang, Hyunho;Baek, Junhyeck
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.589-599
    • /
    • 2021
  • Purpose: A reliable indicator of congested traffic speed is essential in providing the information of traffic flow states about motorway sections. The aim of this study is to propose an adaptive indicator of congested speed which is employed for deciding the traffic flow states for individual motorway sections using disaggregated section-based speed data. Method: Typically, the state of traffic flow is categorized into the three: uncongested, mixed, congested states. A method, presented in this study, was developed for identifying boundary speed values of road sections through categorizing the three traffic flow states with individual vehicular speed values. The boundary speed state of each road segment is determined using the speed distributions of mixed and congested traffic states. Result: Analysis results revealed that boundary speed values between mixed and congested states for road sections were similar to those of US and EU criteria (i.e., 48.28~66.0 kph). This indicates that boundary speed values could be different according to road sections. Conclusion: It is expected that the method and indicator, proposed in this study, could be efficaciously used for providing ad-hoc real-time traffic states and computing traffic congestion costs for motorway sections in the era of big data.

Improvement of Infiltration Performance Measurement in BTL (Build-Transfer-Lease) Sewer Rehabilitation Projects - Focusing on Jeju Special Self-Governing Province - (하수관거정비 임대형민자사업에 있어 침입수 성과지표의 개선에 관한 연구 - 제주특별자치도를 중심으로 -)

  • Ko, Young-Nam;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1133-1143
    • /
    • 2016
  • The purpose of this study is to improve project performance analysis indicators for BTL sewer rehabilitation projects. Among the assessment indicators for BTL sewer rehabilitation projects, an infiltration assessment indicator is given a high score of 17.5 points as a single assessment item. This infiltration assessment indicator is assessed focusing on the amount of infiltration, and presently calculated according to 'Nighttime Domestic Flow Evaluation' method. However, this assessment indicator's failure to reflect the geological features of Jeju region is emerging as a problem in the operational stage. Thus, this study intended to compare and analyze the calculation result depending on the assessment indicators and the actual amount of infiltration, centering on Jeju region. To this end, this study analyzed the amount of infiltration in five areas of Jeju Province calculated according to 'Nighttime Domestic Flow Evaluation' method. Also, a complete enumeration survey was carried out about the conditions for actual infiltration occurrence. According to the results of this survey, ground water level is distributed lower than the level of sewer pipes. The results of a sewer pipe function test show there was no infiltration occurrence caused by sewer pipe defect. So, it is concluded that 'Nighttime Domestic Flow Evaluation' method, which is utilized for the current assessment indicator, is not appropriate to apply to Jeju region, and it is thought that there is a need to establish infiltration criteria specialized for Jeju region.

Evaluating Effect of Density Flow from Upstream on Vertical Distribution of Water Quality at the Paldang Reservoir (팔당호 수질의 연직분포에 대한 밀도류 영향 평가)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.557-566
    • /
    • 2019
  • Paldang is a river reservoir in the Midwest of Korea, which is a drinking water source for the metropolitan area. Since the Paldang Reservoir is shallow, and has a short hydraulic residence time, its water quality is directly impacted by two incoming rivers, the north Han River (NHR) and the south Han River (SHR). The NHR has different seasonal patterns of water temperature from the SHR because the NHR is greatly impacted by the discharge water from upstream dams. The electrical conductivity (EC) and other material concentrations of the SHR are usually higher than those of the NHR because its basin is limestone-based. The difference in water temperature in the two rivers causes density flow, and the distribution of the EC within the reservoir can be an indicator for monitoring density flow. From the vertical gradient of the EC at the dam site, from spring to fall, it was confirmed that the SHR flowed into the upper layer, and the NHR flowed into the lower layer, and vice versa at other times. The relative difference (RD) of the EC between the upper layer and the lower layer at the dam site was used as an indicator for density flow. The RD of the EC showed a very significant correlation with the RD of total organic carbon (r = 0.70, p < 0.001) and the RD of total nitrogen (r = 0.58, p < 0.01). This relationship is based on the assumption that the difference in electrical conductivity and water quality between the SHR and the NHR is constant. However, in many cases this assumption is inconsistent. Thus, further study is needed on more suitable indicators to evaluate the impact of density flow on water quality.