DOI QR코드

DOI QR Code

HAMILTONIAN OF A SECOND ORDER TWO-LAYER EARTH MODEL

  • Selim, H.H. (National Research Institute of Astronomy and Geophysics)
  • Published : 2007.06.30

Abstract

This paper deals with the theory for rotational motion of a two-layer Earth model (an inelastic mantle and liquid core) including the dissipation in the mantle-core boundary(CMB) along with tidal effects produced by Moon and Sun. An analytical solution being derived using Hori's perturbation technique at a second order Hamiltonian. Numerical nutation series will be deduced from the theory.

Keywords

References

  1. Allen, C. W., 2000, Astrophysical Quantities, 4th, ed., Ed. by Arthur N. Cox, Springer
  2. Backus, G. E., 1988, Comparing hard and soft prior bounds in geophysical inverse problems, Geophys. J., 93, 413 https://doi.org/10.1111/j.1365-246X.1988.tb03869.x
  3. Barnes, R. T. H., Hide, R. White, A. A., & Wilson, C. A., 1983, Proc. Roy. Soc. London A387, 31
  4. Bodri, B., & Bodri, L. 1977, Dynamic effect of the liquid core on diurnal earth tides, Int. Sym. on Geodesy and Physics of the Earth, Proceedings. Part 2. (A78-36051 14-42) Potsdam, Deutsche Akademie der Wissenschaften, Zentralinstitut fuer Physik der Erde p441
  5. Bretagnon, P., Rocher, H., & Simon, J. L., 1997, Theory of the rotation of the rigid Earth, A&Ap, 319, 305
  6. Dehant, V., & Zschau, J., 1989, Geophys. J., 97, 549 https://doi.org/10.1111/j.1365-246X.1989.tb00522.x
  7. Folgueira, M., Souchay, J., & Kinoshita, H., 1998, Effects on the nutation of $C_{4,m}\;and\;S_{4,m}$ Harmonics, Celest. Mech. Dyn. Astron., 70, 147 https://doi.org/10.1023/A:1008383423586
  8. Ferrandiz, J. M., Navaro, J. F., Alberto E., & Getino, G., 2004, Precession of the Nonrigid Earth: Effect of the Fluid Outer Core, AJ, 128, 1407 https://doi.org/10.1086/422738
  9. Getino, J., & Ferrandiz, J. M., 2001, Forced nutations of a two-layer Earth model, MNRAS, 322, 785 https://doi.org/10.1046/j.1365-8711.2001.04175.x
  10. Gilbert, J. F., & Dziewonski, A. M., 1975, Application of Normal Mode Theory to the Retrieval of Structural Parameters and Source Mechanisms from Seismic Spectra, Phil. Trans. Roy. Soc., 278, 187 https://doi.org/10.1098/rsta.1975.0025
  11. Hansen, U., Stemmer, K., 2006, American Geophys. Union, U41A
  12. Hori, G., 1966, Theory of General Perturbation with Unspecified Canonical Variable, PASJ, 18, 287
  13. Kinoshita, H., 1977, Theory of General Perturbation with Unspecified Canonical Variable, Celest. Mech. Dyn. Astron., 15, 277 https://doi.org/10.1007/BF01228425
  14. Kinoshita, H. & Souchay, J., 1990, The theory of the nutation for the rigid earth model at the second orderCelest. Mech. Dyn. Astron., 48, 187 https://doi.org/10.1007/BF02524332
  15. Selim, H. H., 2004, NRIAG J. of Astron. and Astrophys., Special Isssue, 275
  16. Smith, M. L. & Dahlen, A., 1981, The period and Q of the Chandler wobble, Geophys. J. RAS., 64, 223
  17. Souchay, J., Loysel, B., Kinoshita, H., & Folgueira, M., 1999, Corrections and new developments in rigid earth nutation theory. III. Final tables 'REN-2000' including crossed-nutation and spin-orbit coupling effects, A&AS, 135, 111 https://doi.org/10.1051/aas:1999446
  18. Takeuchi, H., 1951, Trans. Am. Geophys. Union, 31, 651
  19. Wang, G.-Y., 1975, J. Geophys. Res., 77, 4318