DOI QR코드

DOI QR Code

상추의 자엽 및 제 1엽 절편체들로부터 효율적인 식물체 재분화

Efficient plant regeneration from cotyledon and primary leaf explants of lettuce (Lactuca sativa L.)

  • 손보화 (경상대학교 응용생명과학부, 환경생명국가핵심 연구센터 및 PMBBRC) ;
  • 박철규 (경상대학교 응용생명과학부, 환경생명국가핵심 연구센터 및 PMBBRC) ;
  • 안남영 (경상대학교 응용생명과학부, 환경생명국가핵심 연구센터 및 PMBBRC) ;
  • 전주미 (경상대학교 응용생명과학부, 환경생명국가핵심 연구센터 및 PMBBRC) ;
  • 김차영 (경상대학교 응용생명과학부, 환경생명국가핵심 연구센터 및 PMBBRC) ;
  • 오세찬 (경남과학고등학교) ;
  • 이영훈 (진주산업대학교 미생물공학과) ;
  • 갈상완 (진주산업대학교 미생물공학과) ;
  • 이성호 (경상대학교 응용생명과학부, 환경생명국가핵심 연구센터 및 PMBBRC)
  • Son, Bo-Wha (Division of Applied Life Science (BK21 program) and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Park, Chul-Gyoo (Division of Applied Life Science (BK21 program) and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Ahn, Nam-Young (Division of Applied Life Science (BK21 program) and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Jeon, Joo-Mi (Division of Applied Life Science (BK21 program) and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Kim, Cha-Young (Division of Applied Life Science (BK21 program) and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Oh, Se-Chan (Gyeongnam Science High School) ;
  • Lee, Young-Hoon (Department of Microbiological Engineering, Jinju National University) ;
  • Gal, Sang-Wan (Department of Microbiological Engineering, Jinju National University) ;
  • Lee, Sung-Ho (Division of Applied Life Science (BK21 program) and Environmental Biotechnology National Core Research Center, Gyeongsang National University)
  • 발행 : 2007.06.25

초록

KN배지에서 상추 자엽과 제1엽 절편체로부터 식물체 재분화율을 품종별 비교 했을 때, 자엽에서 정통포기 품종이 91.3%로 가장 높게 나타났고, 고향뚝적축면 품종이 52.3%, 청치마 품종이 35.4%로 가장 낮게 나타났다. 제1엽에서도 정통포기 품종이 85.9%로 가장 높게 나타났고, 고향뚝적축면품종이 50.8%, 청치마 품종에서 30.3% 효운을 나타내었다. 재분화 효율이 가장 낮은 청치마 품종의 재분화 효율을 높이기 위해 다양한 재분화 배지를 사용하여 청치마 품종의 자엽과 제1엽의 식물체 재분화 효율을 비교했다. 자엽에서 재분화 효율은 Kl 배지와 SH 배지, NB 배지에서 거의 평균 77.2%의 높은 재분화 효율을 나타내었고, MSD3 배지에서는 그 보다 낮은 61.1%의 효율을 나타내어 모든 배지에서 KN배지 보다 높게 나타났다. 제1엽에서도 SH 배지에서 85.0%로 가장 높게 나타났고, Kl 배지에서 80.7%, NB 배지에서 67.4%, MSD$_3$배지에서 61.0%의 효율을 나타내어 KN배지보다 모두 높게 나타났다. 따라서 본 실험의 결과 상추의 자엽과 제 1엽 절편체들로부터 효율적인 재분화는 정통포기 품종의 자엽을 K띠 배지에 배양했을 때 가장 효율적으로 나타났으며, 청치마 품종에서는 제 1엽을 SH 배지와 Kl 배지에 배양했을 때 재분화가 효율적인 것으로 나타났다.

The efficient system for plant regeneration from cotyledon and primary feat explants of lettuce was established. Plant regeneration efficiency was shown 91.3% from cotyledon and 85.9% from primary leaf explants of variety 'Jungtongpogi' in KN medium. Plant regeneration efficiency was also estimated with various plant regeneration media in variety' Chungchima', which was lowest plant regeneration efficient showing 35.4% from cotyledon and 30.3% from prima leaf explants in KN medium. Kl medium increased 77.9% and 80.7% of plant regeneration efficiencies from cotyledon and primary leaf explants of variety 'Jungtongpogi' were cultured on KN medium. In case of varie쇼 ‘Chungchima', efficient plant regeneration was shown when primary leaf explants were cultured on SH and KI media.

키워드

참고문헌

  1. Alconero, R. 1983. Regeneration of plants from cell suspensions of Lactuca saligna, Lactuca sativa, and Lactuca serriola. HortScience 18, 305-307
  2. Brown, C., J. A. Lucas and J. B. Power. 1987. Plant regeneration from protoplasts of a wild lettuce species (Lactuca saligna L.). Plant Cell Rep. 6, 180-182 https://doi.org/10.1007/BF00268472
  3. Campbell, R. M. 1984. Lettuce (Lactuca sativa L.). Phytopathology News 17, 86
  4. Cho, E. A., C. A. Lee, Y. S. Kim, S. H. Baek, B. G. de los Reyes and S. J. Yun. 2005. Expression of -tocopherol methyltransferase transgenic improves tocopherol composition in lettuce (Lactuca sativa L.). Mol. Cells 19, 16-22
  5. Choi, U. O., M. S. Yang, M. S. Kim and J. S. Eun. 1994. Genetic transformation of lettuce (Lactuca sativa L.) with Agrobacterium tumefaciens. Korean J. Plant Tissue Culture 21, 55-58
  6. Chung, J. D., C. K. Kim and K. M. Kim. 1998. Expression of $\beta$-glucuronidase (GUS) gene in transgenic lettuce (Lactuca sativa L.) and its progeny analysis. Korean J. Plant Tissue Culture 25, 225-229
  7. Chung, J.-D., B.-J. Lee, H.-S. Lee and C.-K. Kim. 2000. Transformation of chinese cabbage glutathione reductase (GR) gene into lettuce (Lactuca sativa L.) with particle bombardment. Korean J. Plant Tissue Culture 27, 475-478
  8. Curtis, I. S., C. He, R. Scott, J. B. Power and M. R. Davey. 1996. Genomic male sterility in lettuce, a baseline for the production of F1 hybrids. Plant Sci. 113, 113-119 https://doi.org/10.1016/0168-9452(95)04278-4
  9. Doershug, M. R. and C. O. Miller. 1967. Chemical control of adventitious organ formation in Lactuca sativa explants. Amer. J. Bot. 54, 410-413 https://doi.org/10.2307/2440829
  10. Kadkade, P. and M. Seibert. 1977. Phytochrome-regulated organogenesis in lettuce tissue culture. Nature 270, 50-51 https://doi.org/10.1038/270050a0
  11. Kim, M. J., S. H. Baek, N. H. Yoo and S. J. Yun. 2000. Transformation of Arabidopsis gamma-tocopherol methytransferase into lettuce (Lactuca sativa L.). Korean J. Plant Tissue Culture 27, 435-439
  12. Kim, Z.-H. 2004. Inheritance and characteristics of a new dwarf mutant in lettuce. J. Kor. Soc. Hort. Sci. 45, 277-280
  13. Koevary, K., L. Rappaport and L. L. Morris. 1978. Tissue culture propagation of head lettuce. HortScience 13, 39-41
  14. Lee, Z. A., H. Y. Kim, K. H. Chung and Y. D. Park. 2004. Introduction of two types of human ferritin gene into lettuce plants. J. Kor. Soc. Hort. Sci. 45, 330-335
  15. McCabe, M. S., U. B. Mohapatra, S. C. Debnath, J. B. Power and M. R. Davey. 1999. Integration, expression and inheritance of two linked T-DNA marker genes in transgenic lettuce. Mol. Breed. 5, 329-344 https://doi.org/10.1023/A:1009681615365
  16. Michelmore, R. W. and J. A. Eash. 1986. Lettuce, pp. 512-551, In Evans, D. A., W. R. Sharp, P. V. Ammirato and Y. Yamada (eds.), Handbook of plant cell culture, Vol. 4, Macmillan Publishing Company, New York
  17. Michelmore, R., E. Marsh, S. Seely and B. Landry. 1987. Transformation of lettuce (Lactuca sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Rep. 6, 439-442
  18. Murashige, T. and F. Skoog. 1962. A reversed medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plantarum 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  19. Ryder, E. J. 1979. Leafy salad vegetables. pp. 13-94. AVI Publishing, Westport. Conn
  20. Ryu, J. A., C. K. Kim, H. S. Lee, K. B. Choi and D. C. Yang. 2001. Transformation of PAT gene into lettuce (Lactuca sativa L.) using Agrobacterium tumefaciens. Korean J, Plant Tissue Culture 28, 197-200
  21. Sasaki, H. 1979. Physiological and morphological studies on development of vegetable crops. IV. Effect of various media on the adventitious bud formation of lettuce hypocotyl tissue cultured in vitro. J. Japan Soc. Hortic. Sci. 47, 479-484 https://doi.org/10.2503/jjshs.47.479
  22. Sasaki, H. 1979. Physiological and morphological studies on development of vegetable crops. VI. Effect of several auxins, cytokinins and cytokinin-ribosides on the adventitious bud formation of lettuce hypocotyl tissue cultured in vitro. J. Japan Soc. Hortic. Sci. 48, 67-72 https://doi.org/10.2503/jjshs.48.67
  23. Sasaki, H. 1982. Effect of temperature and light on the adventitious bud formation of lettuce hypocotyl tissue cultured in vitro. J. Japan Soc. Hortic. Sci. 51, 187-194 https://doi.org/10.2503/jjshs.51.187
  24. Schenk R. V. and A. C. Hildebrandt. 1972. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50, 199-204 https://doi.org/10.1139/b72-026
  25. Webb, D. T., L. D. Torres and P. Fobert. 1984. Interactions of growth regulators, explant age and culture environment controlling organogenesis from lettuce cotyledons in vitro. Can. J. Bot. 62, 586-590 https://doi.org/10.1139/b84-088
  26. Wroblewski, T., A. Tomczak and R. Michelmore. 2005. Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotech. J. 3, 259-273 https://doi.org/10.1111/j.1467-7652.2005.00123.x