DOI QR코드

DOI QR Code

RAPD를 이용한 능금속 식물종의 계통관계와 유전적 다양성

The classification and comparison of genetic diversity of genus Malus using RAPD

  • 허만규 (동의대학교 분자생물학과)
  • Huh, Man-Kyu (Department of Molecular Biology, Dong-eui University)
  • 발행 : 2007.06.25

초록

능금속(Malus) 식물은 다년생 목본으로 국내에는 약 8종이 있다. 이 속에 있는 사과(M. pumila)는 경제적 중요작물로 그 기원은 서중국의 야생종 M. sieversii일 것으로 추정되고 있다. 우리나라에 자생하는 Malus내 모든 분류군과 중국의 M. sieversii를 RAPD로 분석하였다. 재배종이 높은 다양성을 나타낸 반면 제주아그배나무가 가장 낮은 다양성을 나타내었다. 재배종이 야생종보다 유전적 다양도가 더 높게 나타나 재배화 과정에서 여러 종과교잡이 일어나 많은 유전자가 침투된 것이라는 보고를 됫받침한다. 이 속은 M. sieversii를 포함한 사과나무, 능금나무가 같은 분자군을 형성하였고, 개아그배나무 또는 제주아그배나무(Malus micromalus), 아그배나무(Malus sieboldii), 꽃아그배나무(Malus floribunda)가 같은 분지군, 야광나무(Malus baccata), 개야광나무(Malus baccata for minor), 털야광나무(Malus baccata var. mandshurica)가 같은 분자군을 형성하였다. 한국내 재배종 사과와 능금이 국내 자생종 능금속에서 진화나 분지한 것은 아닌 것으로 판명되었고 오히려 중국 야생종이 그 기원의 하나일 가능성이 시사된다.

Cenus Malus is a long-lived woody species primarily distributed throughout Asia. Many species of this genus are regarded as agriculturally and ecologically important. The phynetics and genetic diversity among eight species of genus Malus were reconstructed using the random amplified polymorphic DNA (RAPD) markers. In a simple measure of intraspecies variability by the percentage of polymorphic bands, the M. micromalus exhibited the lowest variation (34.7%). The M. pumila showed the highest (50.0%). Mean number of alleles per locus (A) ranged from 1.347 to 1.500 with a mean of 1.437. The phenotypic frequency of each band was calculated and used in estimating genetic diversify (H) within species. The mean of H was 0.190 across species, varying from 0.155 to 0.220. In particular, two cultivated species, M. pumila and M. asiatica, had high expected diversity, 0.314 and 0.307, respectively. On a per locus basis, the proportion of total genetic variation due to differences among species ranged from 0.388 to 0.472 with a mean of 0.423, indicating that 42.3% of the total variation was found among species. The phylogenetic tree showed three distinct elates. One includes M. sieversii, M. pumila, and M. asiatica. Another includes three M. baccata taxa. The other includes M. sieboldii, M. floribunsa, and M. micromalus. One variety and one form of M. sieboldii were well separated each other. RAPD markers are useful in germ-plasm classification of genus Malus and evolutionary studies.

키워드

참고문헌

  1. Abo-elwafa, A. K. and M. T. Shimada. 1995. Intra- and inter-specific variations in Lens revealed by RAPD markers. Theor. Appl. Genet. 90, 335-340
  2. Barrett, S. C. H., C. G. Eckert and B. C. Husband. 1993. Evolutionary processes in aquatic plant populations. Aquat. Bot. 44, 105-145 https://doi.org/10.1016/0304-3770(93)90068-8
  3. Bowman, K. D., K. Hutcheson, E. P. Odum and L. R. Shenton. 1971. Comments on the distribution of indices of diversity. Stat. Ecol. 3, 315-359
  4. Chevreau, E., Y. Lespinasse and M. Gallet. 1985. Inheritance of pollen enzymes and polyploidy origin of apple (Malus x domestica Borkh.). Theor. Appl. Genet. 71, 268-277
  5. Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) Version 3.5s. Distributed by the Author. Department of Genetics, Univ. of Washington, Seattle
  6. Hamrick, J. L. and M. J. W. Godt. 1989. Allozyme diversity in plant species, pp. 304-319, In Brown, A.H.D. M.T., A.L. Clegg, Kahler and B.S. Weir (eds.), Plant Population Genetics, Breeding and Genetic Resources, Sinauer, Sunderland, MA
  7. Hancock, J. F. 2003. Plant Evolution and the Origin of Crop Species. pp. 313, 2nd eds, CABI Publishing, Wallingford
  8. Harris, S. A., J. P. Robinson and B. E. Junipae. 2002. Genetic clues to the origin of apples. Trends in Genetics 18, 426-430 https://doi.org/10.1016/S0168-9525(02)02689-6
  9. Hokanson, S. C., J. R. McFerson, P. L. Forsline, W. F. Lamboy, J. J. Luby, A. D. Djangalieb and H. S. Aldwinckle. 1997. Collecting and managing wild Malus germplasm in its center of diversity. HortScience 32, 173-176
  10. Janick, J., J. N. Cummins, S. K. Brown and M. Hermmat. 1996. Apples, pp. 1-79, In Janick, J. and J.N. Moore (eds.), Fruit Breeding, Vol. 1. Tree and Nut Fruits. John Wiley & Sons
  11. Jung, Y. H. and M. Y. Oh. 2005. Phylogenetic relationships of Prunus (Rosaceae) in Korea and Japan inferred from chloroplast DNA sequences. Korean J. Genetics 27, 279-288
  12. Kiang, Y. T. and M. B. Gorman. 1983. Soybean, pp. 295-328, In Tankley, S.D. and T.J. Orton (eds.), Isozymes in Plant Genetics and Breeding, Part A, Elsevier, Amsterdam
  13. Korban, S. S. 1986. Interspecific hybridization in Malus. HortScience 21, 41-48
  14. Korban, S. S. and R. M. Skirvin. 1984. Nomenclature of the cultivated apple. HortScience 19, 177-180
  15. Lauri, P. L., K. Maguylo and C. Trottier. 2006. Architecture and size relations: an essay on the apple (Malus x domestica, Rosaceae) tree. Am. J. Bot. 93, 357-368 https://doi.org/10.3732/ajb.93.3.357
  16. Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA. 70, 3321-3323 https://doi.org/10.1073/pnas.70.12.3321
  17. Nei, M. and W. H. Li. 1979. Mathematical model for studying genetical variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA. 74, 5267-5273
  18. Ohnishi, O. 1998. Search for the wild ancestor of buckwheat III. The wild ancestor of cultivated common buckwheat, and of tatary buckwheat. Econ. Bot. 52, 123-133 https://doi.org/10.1007/BF02861199
  19. Paul, S. P., F. N. Wachira, W. Powell and R. Waugh. 1997. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers, Theor. Appl. Genet. 94, 255-263 https://doi.org/10.1007/s001220050408
  20. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  21. Veidenberg, A. E., N. R. Gaziyan and K. E. Yanes. 1977. Genetic specificity of isozymes in apple. Refertivnye Zhur. 5, 256
  22. Way, R. D., H. S. Aldwincle, R. C. Lamb, A. Rejman, S. Sansavini, T. Shen, R. Watkins, M. N. Weswood and Y. Yoshida. 1991. Apples, pp. 1-66. In Moore, J.N. and Ballington, J.R. (eds), Genetic resources in temperate fruit and nut crops. International Society of Horticultural Science, Wageningen
  23. Webster, A. D., V. H. Oehl, J. E. Jackon and O. P. Jones. 1985. The orchard establishment, growth and precocity of four micropropagated apple scin cultivars. J. Horti. Sci. 60, 169-180
  24. Yeh, F. C., R. C. Yang and T. Boyle. 1999. POPGENE Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis. University of Alberta, Alberta